Publications grouped by year (newest first). See also Google Scholar .
 * means equal contribution.
 © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.
  
  2025      
  Riemannian Flow Matching for Brain Connectivity Matrices via Pullback Geometry
  Antoine Collas , Ce Ju, Nicolas Salvy, and Bertrand Thirion 
  
  Submitted to NeurIPS 
           
  PSDNorm: Test-Time Temporal Normalization for Deep Learning on EEG Signals
  Théo Gnassounou, Antoine Collas , Rémi Flamary, and Alexandre Gramfort 
  2025 
  Submitted to NeurIPS 
           
  SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
  Ce Ju, Reinmar J Kobler, Antoine Collas , Motoaki Kawanabe, Cuntai Guan, and Bertrand Thirion 
  2025 
  Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence 
          2024      
  Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment
  Théo Gnassounou* , Antoine Collas*  , Rémi Flamary, Karim Lounici, and Alexandre Gramfort 
  2024 
  Submitted to Journal of Machine Learning Research (JMLR) 
           
  SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation
  Yanis Lalou* , Théo Gnassounou* , Antoine Collas*  , Antoine Mathelin, Oleksii Kachaiev, Ambroise Odonnat, Alexandre Gramfort, Thomas Moreau, and Rémi Flamary 
  2024 
  Submitted to Transactions in Machine Learning Research (TMLR) 
           
  Geodesic Optimization for Predictive Shift Adaptation on EEG data
  Apolline Mellot* , Antoine Collas*  , Sylvain Chevallier, Alexandre Gramfort, and Denis A Engemann 
  2024 
  Spotlight (top 10% accepted papers) at NeurIPS 2024, Vancouver, Canada 
           
  SKADA : Scikit Adaptation
  Théo Gnassounou, Oleksii Kachaiev, Rémi Flamary, Antoine Collas , Yanis Lalou, Antoine Mathelin, Alexandre Gramfort, Ruben Bueno, Florent Michel, Apolline Mellot, Virginie Loison, Ambroise Odonnat, and Thomas Moreau 
  2024 
  
           
  Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets
  Apolline Mellot, Antoine Collas , Sylvain Chevallier, Denis Engemann, and Alexandre Gramfort 
  In 2024 32th European Signal Processing Conference (EUSIPCO), Lyon, France , 2024 
  
           
  Weakly supervised covariance matrices alignment through Stiefel matrices estimation for MEG applications
  Antoine Collas , Rémi Flamary, and Alexandre Gramfort 
  2024 
  
          2023      
  The Fisher-Rao geometry of CES distributions
  Florent Bouchard, Arnaud Breloy, Antoine Collas , Alexandre Renaux, and Guillaume Ginolhac 
  In Springer (to appear) , 2023 
  
           
  Harmonizing and aligning M/EEG datasets with covariance-based techniques to enhance predictive regression modeling
  Apolline Mellot, Antoine Collas , Pedro L. C. Rodrigues, Denis Engemann, and Alexandre Gramfort 
  Imaging Neuroscience , 2023 
  
           
  Parametric information geometry with the package Geomstats
  Alice Le Brigant, Jules Deschamps, Antoine Collas , and Nina Miolane 
  ACM Transactions on Mathematical Software , 2023 
  
           
  Riemannian optimization for non-centered mixture of scaled Gaussian distributions
  Antoine Collas , Arnaud Breloy, Chengfang Ren, Guillaume Ginolhac, and Jean-Philippe Ovarlez 
  IEEE Transactions on Signal Processing , 2023 
  
           
  Entropic Wasserstein Component Analysis
  Antoine Collas , Titouan Vayer, Rémi Flamary, and Arnaud Breloy 
  In IEEE Machine Learning for Signal Processing (MLSP) - Rome, Italy , 2023 
  
          2022      
  Riemannian geometry for statistical estimation and learning: application to remote sensing
  Antoine Collas  
  Ph. D. dissertation, Université Paris-Saclay , 2022 
  
           
  Apprentissage robuste de distance par géométrie riemannienne
  Antoine Collas , Arnaud Breloy, Guillaume Ginolhac, Chengfang Ren, and Jean-Philippe Ovarlez 
  In GRETSI 2022 XXVIIIème colloque, Nancy, France , 2022 
  
           
  Robust Geometric Metric Learning
  Antoine Collas , Arnaud Breloy, Guillaume Ginolhac, Chengfang Ren, and Jean-Philippe Ovarlez 
  In 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia , 2022 
  
   
 Best Student Paper Award EUSIPCO 2022
            
  On The Use of Geodesic Triangles Between Gaussian Distributions for Classification Problems
  Antoine Collas , Florent Bouchard, Guillaume Ginolhac, Arnaud Breloy, Chengfang Ren, and Jean-Philippe Ovarlez 
  In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore , 2022 
  
          2021      
  Probabilistic PCA From Heteroscedastic Signals: Geometric Framework and Application to Clustering
  Antoine Collas , Florent Bouchard, Arnaud Breloy, Guillaume Ginolhac, Chengfang Ren, and Jean-Philippe Ovarlez 
  IEEE Transactions on Signal Processing , 2021 
  
           
  A Tyler-Type Estimator of Location and Scatter Leveraging Riemannian Optimization
  Antoine Collas , Florent Bouchard, Arnaud Breloy, Chengfang Ren, Guillaume Ginolhac, and Jean-Philippe Ovarlez 
  In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada (Virtual) , 2021 
  
          2020     
  Robust Low-Rank Change Detection for Multivariate SAR Image Time Series
  Ammar Mian, Antoine Collas , Arnaud Breloy, Guillaume Ginolhac, and Jean-Philippe Ovarlez 
  IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2020