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Probabilistic PCA from Heteroscedastic Signals:
Geometric Framework and Application to Clustering
Antoine Collas, Florent Bouchard, Arnaud Breloy, Guillaume Ginolhac, Chengfang Ren, Jean-Philippe Ovarlez

Abstract—This paper studies a statistical model for het-
eroscedastic (i.e., power fluctuating) signals embedded in white
Gaussian noise. Using the Riemannian geometry theory, we
propose an unified approach to tackle several problems related
to this model. The first axis of contribution concerns parameters
(signal subspace and power factors) estimation, for which we
derive intrinsic Cramér-Rao bounds and propose a flexible
Riemannian optimization algorithmic framework in order to
compute the maximum likelihood estimator (as well as other cost
functions involving the parameters). Interestingly, the obtained
bounds are in closed forms and interpretable in terms of
problem’s dimensions and SNR. The second axis of contribution
concerns the problem of clustering data assuming a mixture
of heteroscedastic signals model, for which we generalize the
Euclidean K-means++ to the considered Riemannian parameter
space. We propose an application of the resulting clustering
algorithm on the Indian Pines segmentation problem benchmark.

Index Terms—Covariance Matrices, Probabilistic PCA, Het-
eroscedastic data, Robust Estimation, Riemannian Optimization,
Clustering

I. INTRODUCTION

Principal Component Analysis (PCA) [1] is a standard tool
used in signal processing and machine learning literature for
dimensional reduction and statistical interpretation. In this
scope, Probabilistic PCA (PPCA) refers to a reformulation of
PCA as a parametric estimation problem. This approach was
proposed in [2], which considered a model of white Gaussian
noise (WGN) plus a linear mapping of a low-dimensional
centered Gaussian latent space with unit variance (the signal
contribution). The maximum likelihood estimate (MLE) of the
signal subspace basis corresponds to the sample covariance
matrix’s (SCM) first principal eigenvectors.

Leveraging the statistical formulation of PPCA allows going
beyond Gaussian models. For example, the two independent
contributions (either signal or noise) can be generalized to
the distribution of Compound Gaussian (CG). CGs represent
a family of elliptical distributions (cf. review in [3]) that
encompasses numerous standard heavy-tailed models, such
as the multivariate t-distribution. Its stochastic representation
involves a Gaussian vector multiplied by an independent
random power factor referred to as texture. In order to be
robust to various underlying distributions, this parameter is
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often assumed to be unknown deterministic, which yields
the so-called scaled Gaussian model [4], also referred to as
heteroscedastic (HS) [5]. In this scope [6]–[8] considered HS
distributions for the signal component to perform robust PCA
for non-Gaussian signals. Conversely, [5] considered Gaussian
signals embedded in white CG noise to model data where
some samples are noisier than others. Alternatively, [9] uses
a t-distribution to model both of the contributions. Finally,
[10] considered a mixture of three components to account for
potential outliers (the thirds contribution being orthogonal to
the signal subspace).

In the following, we will focus on HS plus WGN model [6]–
[8] which is interpreted as impulsive signals (power variation
across samples) plus thermal noise due to electronics. A
common relaxation of this model is to assume that eigenvalues
of the (low-rank) signal covariance matrix are identical as in
[11], [12]. Indeed, this hypothesis is relevant since we still
estimate the power variations which contain, the information
of the eigenvalues. Moreover, [6], [10], [13] showed that
neglecting the differences between eigenvalues does not harm
the accuracy of subspace estimation while allowing for a more
meaningful statistical interpretation [11].

Yet, the previous studies still left some unanswered issues:
first, the algorithms in [11], [12] are dedicated bloc-coordinate
descent type. Thus, they can be limited in practice, as they
offer no generalization to on-line (or stochastic) settings. It
would then be relevant for the estimation problem to be cast
in a more generic optimization framework that can account for
the parameter structure (e.g., subspaces, vectors with strictly
positive values). Second, the MLE of the considered model
is the solution of a nonconvex problem with no guarantee
for global optimality. Thus, it would be interesting to derive
performance bound in order to assess for various algorithms
performance. Such bound is not trivial for these models
because structured parameters require accounting for specific
constraints, as well as for the use of relevant distances as
error measure (e.g. to ensure for some invariance). Finally,
one can inquire if the features of such statistical model can
be meaningfully leveraged in machine learning tasks such as
clustering.

Therefore, this paper conducts a study of the HS plus WGN
model [11], [12] through the prism of Riemannian geometry,
as this this theoretical framework allows us to propose a
unified view to tackle the aforementioned questions. The
contributions concern the following directions:
i) Riemannian optimization framework for model features: HS
plus WGN model involves parameters that are textures (power
factors) and a low-rank subspace. Endowing this parameter
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space with a Riemannian metric yields a Riemannian manifold,
which can be leveraged in an optimization framework [14]. In
this context, we consider the model’s Fisher information metric
(FIM). We then obtain several essential tools (tangent space,
Riemannian gradient, retraction) from established results on
the Grassman manifold [15]. These tools are then used to
propose algorithms in order to compute the MLE, as well
as the Riemannian means used in clustering algorithms (cf.
next points). We notably propose a Riemannian stochastic
gradient descent algorithm [16] suited to large datasets (or
online settings [17]).
ii) Performance bounds: We show that the FIM of the con-
sidered model (and its corresponding Riemannian distance)
permits to derive closed forms and decoupled intrinsic Cramér-
Rao lower bound (iCRLB) for the model’s parameters. These
lower bounds represent partial extensions of [7] (Euclidean
CRLB in the case of colored signals) to the iCRLB framework
of [18]. Interestingly, the proposed approach offers a new
interpretable result regarding problem dimensions and signal-
to-noise ratio (SNR). Then, we assess the performance of
different estimation algorithms numerically. We show that
both the proposed estimation algorithm and the previously
established block-coordinate algorithm [12] are statistically
efficient for the signal subspace estimation. In a low SNR
scenario, they also both outperform subspace estimated by
singular value decomposition (SVD) in terms of MSE.
iii) Applications to clustering: we propose a Riemannian
clustering algorithm for data following the HS plus WGN
model. Indeed, the use of the Riemannian geometry of sta-
tistical features in order to classify batches of samples has
already demonstrated its merits; see e.g. [19], [20] for such
methods based on covariance matrices. Here, we extend such
methodology to the considered statistical model using the
principle of K-means++ [21], which optimizes the within-
cluster sum of squares (WCSS) iteratively. Replacing the Eu-
clidean distance by a Riemannian one allows for this clustering
algorithm to takes into account the geometrical constraints
of the parameter space (invariance properties of subspaces
and positivity of powers), which is shown to improve the
clustering performance on the hyperspectral image Indian
Pines benchmark [22]. We also show that this replacement still
preserves the upper bound on the expectation of the WCSS in
[21], which guarantees (in expectation) a clustering close to
the optimal one.

This paper is organized as follows. Section II presents
the statistical model and the parameter space as a manifold.
Section III presents a Riemannian geometry for this manifold,
and essential tools driven from two possible metrics. Section
IV presents results related to parameter estimation (MLE
algorithms based on Riemannian optimization and iCRLBs).
Section V presents a clustering algorithm (Riemannian K-
means++) adapted to the considered parameter manifold.
Numerical results are presented in Section VI. Appendix A
contains the technical proofs.

II. MODEL AND PARAMETER SPACE

A. Heteroscedastic signal model

Let {xi}ni=1 be a data set of p-dimensional complex vec-
tors. We consider a k-dimensional linear signal representation
embedded in white Gaussian noise, i.e. the model:

x
d
= U g + n, (1)

where g ∈ Ck is the signal of interest, n ∼ CN (0, σ2Ip) is a
white Gaussian noise, and U ∈ Stp,k is an orthonormal basis
of the signal subspace, where

Stp,k =
{
U ∈ Cp×k : UHU = Ik

}
, (2)

denotes the complex Stiefel manifold. In array-processing
literature it is classically assumed that gi ∼ CN (0,Σ), which
yields a low-rank structured Gaussian model, also referred to
as the (Gaussian) Probabilistic PCA (PPCA) model in [2].
Note that these models often rely on the unconstrained identi-
fication x d

=W g̃+n, with W = UΣ1/2 and g̃i ∼ CN (0, I).
However, using U ∈ Stp,k is here more coherent with later
developments.

In order to model heavy-tailed signals (e.g., outliers or
power discrepancies), several works [6]–[8], [11] considered
generalizing the Gaussian PPCA to Compound Gaussian (CG)
distributions [3]. Such signal model yields

xi|τi
d
=
√
τiU gi + ni, (3)

where gi ∼ CN (0,Σ) and τi ∈ R+ is a random power factor
referred to as texture, which is statistically independent of
gi. Starting from this representation, we make the following
additional assumptions:
• Known noise floor: The variance σ2 is considered known. If
σ2 is unknown in practice, it can be accurately pre-estimated
by averaging lowest eigenvalues of the SCM [2]. The
hypothesis of known σ2 simplifies the exposition and does
not change significantly the performance in practice when
compared to a joint estimation scheme (see e.g. [23]). Without
loss of generality, such assumption allows us to set σ2 = 1.
• Unknown deterministic textures: In order to provide a model
that is robust to any underlying CG distribution, it is often
assumed that the textures {τi}ni=1 are unknown deterministic
rather than assigning it a pre-determined probability density
function [6]–[8]. Such distribution is then referred to as
scaled Gaussian model [4] or heteroscedastic signals [5].
• Isotropic signal: We consider the relaxation from [11],
[12], assuming that the eigenvalues of the signal covariance
matrix are identical, i.e., gi ∼ CN (0, σsIk). In conjunction
with the unknown deterministic textures assumption, this
allows the change of variable τ̃i = σsτi, and thus setting
σs = 1 without loss of generality. While apparently not
realistic, this hypothesis is still representative since the
average signal power information is accounted for by the
texture parameters. Moreover, [6], [10], [13] showed that
neglecting the differences between eigenvalues does not harm
the accuracy of subspace estimation while allowing for a
more meaningful statistical interpretation [11].
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Finally, we have the data {xi}ni=1 distributed as in (3)
where gi ∼ CN (0, Ik) and ni ∼ CN (0, Ip). The unknown
model parameters are the textures {τi}pi=1 (denoted by the
vector τ ∈ (R++)n) and the signal subspace, represented
by a basis U ∈ Stp,k. The following section will recast this
parameter space as a manifold. This reformulation will then
allow us to leverage tools from the Riemannian geometry in
order to derive distances, intrinsic Cramér-Rao Bounds and
optimization methods with a unified view.

B. Manifold approach to the parameter space

Due to their specific geometrical structure, the parameters
(U , τ ) of model (3) can be embedded into the product
manifold Mp,k,n = Stp,k × (R++)n. With this model, from
Mp,k,n, the scaled covariance matrix in H++

p of sample xi is
obtained through the function

ψi : Mp,k,n → H++
p

(U , τ ) 7→ Ip + τiU U
H .

(4)

It follows that the negative log-likelihood corresponding to
model (3) is given, for all θ = (U , τ ) ∈Mp,k,n, by

L(θ) =
∑
i

log
∣∣ψi(θ)∣∣+ xHi (ψi(θ))−1 xi. (5)

The model (3) is ambiguous since the representation by the
basis U is invariant by rotation: for all O ∈ Uk (where Uk
is the unitary group of degree k), (UO, τ ) is equivalent to
(U , τ ), i.e., it yields the same scaled covariance matrices in
H++
p . The consequence is that the manifold Mp,k,n is not

optimal with respect to the model of interest. In terms of
optimization, for instance for maximum likelihood estimation,
it is possible to exploit Mp,k,n directly but it is advantageous
to take into account the invariance. Moreover, to measure
estimation errors or perform geometrical classification and
clustering, employing a distance function onto Mp,k,n is not
ideal: the distance between two equivalent points is not equal
to zero. It thus appears very attractive to take this invariance
into account.

Fortunately, it is possible to naturally handle this rotation
invariance from a geometrical perspective. It is achieved by
considering the Grassmann manifold Grp,k, which is the set of
all k-dimensional subspaces of Cp. The Grassmann manifold
can be identified to the quotient manifold [14], [15], [24]

Grp,k = {{UO : O ∈ Uk} : U ∈ Stp,k}. (6)

From there, to optimally embed the parameters of model (3),
we construct the manifold Mp,k,n = Grp,k × (R++)n. This
manifold can be viewed as a quotient manifold of Mp,k,n,
i.e., it can be defined as

Mp,k,n = {π(θ) : θ ∈Mp,k,n}, (7)

where, for all θ = (U , τ ) ∈ Mp,k,n, the equivalence class is
defined as

π(θ) = {(UO, τ ) : O ∈ Uk}. (8)

Functions ψi defined onto Mp,k,n induce functions ψi onto
Mp,k,n, i.e. ψi(θ) = ψi(π(θ)). Thus, xi in (3) is drawn as
xi ∼ CN (0, ψi(θ)). It follows that the log-likelihood L in (5)

defined onto Mp,k,n can also be defined onto Mp,k,n by
using functions ψi instead of ψi. This log-likelihood function
is denoted L in the following.

Besides acknowledging the model invariances, considering
Mp,k,n as a manifold allows for advantageously exploiting
Riemannian geometry, i.e., the geometries of Mp,k,n induced
by Riemannian metrics. In particular for signal processing
applications, it can be leveraged for:

1) Estimation: the Riemannian optimization framework can
be employed to compute maximum likelihood estimators
(Section IV-A) and Riemannian means (Section V) in
various practical scenarios.

2) Performance measuring: the Riemannian distance natu-
rally defines an error measure, which can then be bounded
using the framework of intrinsic Cramér-Rao bound [18].
This point will be detailed in Section IV-B.

3) Machine learning: the Riemannian distance can also be
exploited to cluster and classify various data which follow
model (3), which will be further discussed in Section V.

In order to achieve these, different geometrical objects are
needed. Section III will introduce these tools conditionally to
the choice of the Riemannian metric.

III. GEOMETRY OFMp,k,n

Various choices of Riemannian geometries are available for
Mp,k,n, entirely depending on the choice of the Riemannian
metric. Among different possibilities, one is optimal with
respect to the considered statistical model: the Fisher informa-
tion metric [25]. Indeed, it is derived from the log-likelihood
function of the distribution at hand and thus perfectly cap-
tures the particularities of the model. However, the geometry
induced by the Fisher information metric is often hard to
fully leverage. One has therefore to compromise and define an
alternate geometry (induced by a metric as close as possible
to the Fisher one) in order to obtain tractable expressions for
the needed geometrical tools.

In this section, we first provide an introduction on Mp,k,n

viewed as a Riemannian quotient manifold in Section III-A.
We then study the Fisher information metric of likelihood (5)
and derive the geometrical objects needed for Riemannian
optimization in Section III-B. However, required objects re-
lated to Riemannian distances cannot be obtained in closed-
form. An alternate geometry using a decoupled metric (close
to the Fisher one) is thus proposed in order to achieve these in
Section III-C. The obtained results are summarized in Table I.

A. Mp,k,n as a Riemannian quotient manifold

Since Grp,k is a quotient manifold of Stp,k with respect
to the action of Uk [15], Mp,k,n = Grp,k × (R++)n is a
quotient of Mp,k,n = Stp,k × (R++)n. To handle elements of
Mp,k,n, which are equivalence classes {(UO, τ ) : O ∈ Uk},
one usually exploits the canonical projection π : Mp,k,n →
Mp,k,n in (8). Equivalence classes are obtained through π as
{(UO, τ ) : O ∈ Uk} = π−1(π(U , τ )) and each element θ ∈
Mp,k,n can be represented by any θ = (U , τ ) ∈Mp,k,n such
that θ = π(θ). In general, geometrical objects on Mp,k,n can
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Tools for Riemmanian optimization Tools for Riemannian distances
Metric Horizontal space Hθ Riemannian gradient Retraction Orthonormal basis of Hθ Distance Exp. Log.

Fisher information metric (12) (13) (15) (Prop. 2 for L) (16) ∼ x x x
Decoupled metric (17) (13) ∼ ∼ Prop. 5 (18)-(19) (21) (20)

TABLE I: Summary of the geometric tools (and their intended use) obtained for Mp,k,n. Symbol ∼ means that it is not
provided in this paper but that it could be easily derived; and symbol x means that it is complicated to find and remains
unknown.

Mp,k,n

π−1
(π(θ))

•
θ

TθMp,k,n

Vθ
Hθ

π

Mp,k,n•
θ = π(θ)

TθMp,k,n

Fig. 1: Illustration of the quotient Mp,k,n represented by ele-
ments ofMp,k,n. The set of all representations of θ = π(θ) ∈
Mp,k,n is the equivalence class π−1(π(θ)) ⊂ Mp,k,n. The
tangent space TθMp,k,n can be decomposed into the vertical
space Vθ = TUπ

−1(π(θ)) and its orthogonal complement, the
horizontal spaceHθ, which provides proper representatives for
tangent vectors in TθMp,k,n.

be represented by objects onMp,k,n. A schematic illustration
of the quotient manifold is provided in Figure 1.

The tangent space TθMp,k,n of θ = π(θ) ∈ Mp,k,n can
be represented by a subspace of the tangent space TθMp,k,n.
First, we note that

TθMp,k,n = TUStp,k × Tτ (R++)n

= {(ξU , ξτ ) ∈ Cp×k × Rn : UHξU + ξHUU = 0}. (9)

thanks to TθMp,k,n being a product manifold, and standard
results on Stp,k and (R++)n respectively. The tangent space
TθMp,k,n can now be decomposed into two complementary
subspaces: the vertical and horizontal subspaces [14]. The
vertical space is defined as the tangent space Tθπ

−1(π(θ)) of
the equivalence class π−1(π(θ)) at θ. In the case of Mp,k,n,
the vertical space at θ is

Vθ = {(UA,0) : A ∈ H
⊥
k }, (10)

where H⊥k = {A ∈ Ck×k : AH = −A} is the set of k × k
skew-Hermitian matrices. The orthogonal complement of the
vertical space Vθ is the horizontal space Hθ, which provides
proper representations of the tangent vectors in TθMp,k,n:
there is a one-to-one correspondance between elements of
these two spaces. Note that the notion of orthogonal comple-
ment is conditioned by the choice of an inner product 〈·, ·〉θ
defined on TθMp,k,n, which will also turn Mp,k,n into a
Riemannian manifold.

Indeed, a Riemannian manifold is a manifold endowed with
a Riemmanian metric (inner product defined for every tangent
space). In the case of a Riemannian quotient manifold, such
metric can be represented by a metric onMp,k,n, i.e., an inner
product 〈·, ·〉θ defined for TθMp,k,n at each point θ. Still,
for Mp,k,n to be properly defined as a Riemannian quotient
manifold, this metric onMp,k,n has to be invariant along each
equivalence class. In our case, for all O ∈ Uk, θ = (U , τ ) ∈
Mp,k,n, ξ = (ξU , ξτ ) and η = (ηU ,ητ ) in TθMp,k,n, we
must have

〈ξ, η〉θ = 〈(ξUO, ξτ ), (ηUO,ητ )〉(UO,τ ). (11)

The choice of such Riemannian metric on Mp,k,n will then
induce a specific geometry (and corresponding theoretical
tools) for this space.

B. Fisher information metric: geometry for optimization

First, we consider the geometry resulting from the Fisher
information metric of corresponding to likelihood (5) on
Mp,k,n. Since the statistical model is invariant along equiv-
alence classes, the corresponding Fisher metric satisfies (11).
It thus induces a Riemannian metric onto Mp,k,n. To do so,
we first derive this metric in Proposition 1.

Proposition 1 (Fisher information metric). The Fisher infor-
mation metric at θ corresponding to the negative likelihood (5)
is, for all ξ, η ∈ TθMp,k,n,

〈ξ, η〉FIM
θ

= 2n cτ Re
(
Tr
(
ξHU ηU

))
+ k

(
ξτ � (1 + τ )�−1

)T (
ητ � (1 + τ )�−1

)
, (12)

where cτ =
1

n

n∑
i=1

τ2i
1 + τi

.

Proof. See Appendix A.

The part of the Fisher metric in the above proposition which
is related to U , i.e., the part that depends on components ξU
and ηU , is equal to the classical metric on Grassmann [14],
[15], [24], up to the factor 2ncτ . We can also note that this
factor does not affect the classical definition of the horizontal
space of the Grassmann manifold. This directly yields that the
horizontal space Hθ in TθMp,k,n associated with the metric
of Proposition 1 is

Hθ = {(ξU , ξτ ) ∈ Cp×k × Rn : UHξU = 0}. (13)

Unfortunately, the geometry of Mp,k,n associated with the
Fisher information metric of Proposition 1 is complicated
to fully characterize. In particular, finding the geodesics of
Mp,k,n (curves of minimal length between two points in
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Mp,k,n) is very hard because of the factor cτ in the metric.
In this part, we will focus on the use of the Fisher information
metric in the framework of Riemannian optimization [14].
Alternate tractable geometric tools regarding geodesics and
distance measurements (Riemannian exponential and loga-
rithm mapping, Riemannian distance), will be obtained from
a decoupled metric in Section III-C.

We will consider optimization problems of the form

minimize
θ∈Mp,k,n

f(θ) (14)

for a cost function f :Mp,k,n → R, induced by f :Mp,k,n →
R invariant along equivalence classes (i.e., f = f ◦π). In order
to perform first order Riemannian optimization algorithms,
we essentially need two tools: the Riemannian gradient and
a retraction (operator transforming tangent vectors into points
onto the manifold) [14].

The Riemannian gradient grad f(θ) of f at θ = π(θ) ∈
Mp,k,n is represented by the Riemannian gradient grad f(θ)
of f at θ ∈ Mp,k,n. By definition, the gradient is the only
tangent vector in TθMp,k,n satisfying

∀ ξ ∈ TθMp,k,n, D f(θ)[ξ] = 〈grad f(θ), ξ〉FIM
θ
. (15)

Note that this vector always belongs to the horizontal space
Hθ due to the invariance of f along equivalence classes. In
upcoming sections, this definition of the Riemannian gradient
will then be used to construct descent direction depending on
the considered cost function and optimization algorithm.

To obtain a point on Mp,k,n from a descent direction
(vector in Hθ) one needs a retraction, i.e., an operator Rθ :
TθMp,k,n → Mp,k,n which maps tangent vectors onto the
manifold. Such retraction on Mp,k,n can be obtained by a
retraction on Mp,k,n (denoted Rθ : TθMp,k,n → Mp,k,n)
using the relation Rθ(ξ) = π(Rθ(ξ)). This requires two
conditions

1) Rθ is a proper retraction on Mp,k,n: ∀ θ ∈ Mp,k,n and
ξ ∈ TθMp,k,n, Rθ(0) = θ and DRθ(0)[ξ] = ξ.

2) The induced retraction on Mp,k,n invariant along the
equivalence classes: in our case, this translates into
π(Rθ(ξ)) = π(R(UO,τ )((ξUO, ξτ )), for all O ∈ Uk,
θ = (U , τ ) ∈Mp,k,n and ξ = (ξU , ξτ ) ∈ TθMp,k,n.

Notice that the notion of retraction does not depend on the
choice of the metric, so several options are generally available.
In this paper, we consider the following retraction from classi-
cal results on Stp,k [26] and (R++)n. This retracion defined on
Mp,k,n for all θ = (U , τ ) ∈Mp,k,n and ξ = (ξU , ξτ ) ∈ Hθ
as

Rθ(ξ) =

(
XY H , τ + ξτ +

1

2
τ�−1ξ�2τ

)
, (16)

where U + ξU = XΣY H is the thin SVD. Notice that for
the part that concerns τ , we have a second degree polynom
in ξτ with a negative discriminant, thus the resulting vector
contains strictly positive numbers. It can be checked that the
two conditions are satisfied, and this option was chosen for its
numerical stability.

C. Decoupled metric: geometry for distances

Riemannian distances can be used either for performance
assessment, or in machine learning algorithms (e.g. for clus-
tering). Their interest can notably be their natural invariances
with respect to the manifold and/or metric of interest. These
distances are obtained by measuring the length of geodesics,
which generalize straight lines onto manifolds while taking
into account the curvature induced by the metric and geometric
constraints. Unfortunately the Riemannian distance induced by
the Fisher information metric of Proposition 1 cannot be ob-
tained in closed-form. To overcome this difficulty, we propose
to use a decoupled metric from the following definition.

Definition 1 (Decoupled metric). The Riemannian metric
〈·, ·〉· is defined, for all θ = (U , τ ) ∈ Mp,k,n, ξ = (ξU , ξτ )
and η = (ηU ,ητ ) ∈ TθMp,k,n, as

〈ξ, η〉θ = αRe
(
Tr
(
ξHU ηU

))
+ β

(
ξτ � τ�−1

)T (
ητ � τ�−1

)
, (17)

where α, β > 0.

Notice that the decoupled metric has a structure similar to
the Fisher information metric in Proposition A: it consists in
a scaled combination of standard metrics on Grp,k [14], [15],
[24] and (R++)n [27]. The main difference is that the weights
α and β remain constant in the decoupled metric, which will
yield a geometry from well-known results. Another particular
interest is that the flexibility regarding this factors allows
emphasizing a parameter (subspace spanned by U or textures
τ ) in the considered geometry. This is notably interesting
for clustering applications (see Section V) where we want to
control the importance of each feature.

First, one can check that the horizontal space at θ inMp,k,n

for the Riemannian metric in Definition 1 is the same as the
one given in (13) corresponding to the Fisher information
metric of Proposition 1. It is thus also denoted Hθ in the
following.

Second, we can deduce several geometric tools from classi-
cal results about Grp,k in [14], [15], [24] and (R++)n in [27].
The squared Riemannian distance between θ1 = π(θ1) and
θ2 = π(θ2) in Mp,k,n is given by

d2Mp,k,n
(θ1, θ2) = αd2Grp,k(U1,U2)+βd

2
(R++)n(τ1, τ2), (18)

where d2Grp,k and d2(R++)n are the squared Riemannian dis-
tances of Grp,k and (R++)n, respectively. They are defined
as

d2Grp,k(U1,U2) = ‖Θ‖22,
d2(R++)n(τ1, τ2) = ‖log(τ1)− log(τ2)‖22,

(19)

where Θ is obtained from the SVD UH
1 U2 = O1 cos(Θ)OH

2 .
An additional tool linked to the Riemannian distance is
the Riemannian logarithm mapping. Given a reference point
θ1 = π(θ1) and a second point θ2 = π(θ2) both inMp,k,n, the
Riemannian logarithm mapping is an operator that provides a
vector of Tθ1Mp,k,n that points towards θ2 and whose squared
norm with respect to the metric in (17) is d2Mp,k,n

(θ1, θ2)
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(as defined in (18)). Here, the representation in Hθ1 of the
Riemannian logarithm mapping on Mp,k,n is

logθ1(θ2) =
(
log

Grp,k
U1

(U2), log(R
++)n

τ1 (τ2)
)
,

log
Grp,k
U1

(U2) =XΘY H ,

log(R
++)n

τ1 (τ2) = τ1 � log(τ�−11 � τ2),

(20)

where XΘY H is defined through the SVD (Ip −
U1U

H
1 )U2(U

H
1 U2)

−1 = X tan(Θ)Y H Conversely, the
inverse of this application is the Riemannian exponential
mapping on Mp,k,n, whose representation in Mp,k,n, for
θ ∈Mp,k,n and ξ = (ξU , ξτ ) ∈ Hθ is given by

expθ(ξ) =
(
exp

Grp,k
U (ξU ), exp(R

++)n

τ (ξτ )
)
,

exp
Grp,k
U (ξU ) = U Y cos(Σ) +X sin(Σ),

exp(R
++)n

τ (ξτ ) = τ � exp(τ�−1 � ξτ ),

(21)

where ξU = XΣY H is the SVD such that X ∈ Cp×k and
Σ, Y ∈ Ck×k. These operators provide mappings between
the manifold and its tangent space, which will notably be
instrumental in in Section IV-B to define an estimation error
vector, and in Section V in order to define Riemannian means.

IV. PARAMETER ESTIMATION

A. MLE with Riemannian optimization

In this section, we cast the MLE as an optimization problem
on Mp,k,n, i.e. we seek to solve:

θ? = argmin
θ∈Mp,k,n

L(θ), (22)

where L :Mp,k,n → R is the negative log-likelihood defined
in (5). To solve this estimation problem, a block coordinate
descent (BCD) has been proposed in [12]. Here, we present
an alternative algorithm leveraging the information geometry
presented in Section III-B.

A first alternative is to use a Riemannian gradient descent
(RGD) [14]. An iteration of this algorithm consists in comput-
ing the gradient of L and then retracting minus the gradient
multiplied by a step size. Given the iterate θ(t) represented by
θ
(t)

, the RGD algorithm yields

θ
(t+1)

= R
θ
(t)

(
−νt gradL(θ

(t)
)
)
, (23)

where νt is a step size, gradL(θ
(t)
) is a representative of

the Riemannian gradient associated to the Fisher information
metric of Proposition 3, and R

θ
(t) is the retraction defined

in (16). Hence, it also corresponds to the so-called natural
gradient as defined in [28], which regained interest due to its
link with second order optimization methods [29].

Here, we propose a more flexible approach following the
recent works [30], [31]: we derive a Riemannian stochastic
gradient descent (R-SGD) on Mp,k,n. The R-SGD is a Rie-
mannian optimization algorithm that computes the gradient of
the function to minimize only on a subset A of all measured
signals {xi}ni=1. Hence, contrary to the BCD or the RGD,
this algorithm can be used on large scale datasets and the cost
of an iteration can be modulated according to the computing

capacity. Since the number of samples A can be chosen
arbitrarily set, this algorithm also encompasses the “plain” R-
SGD (A = {xi}) and the classical RGD [14] (A = {xi}ni=1).
Additionally, the R-SGD will be shown to have a lower
complexity (per iteration) than the BCD.

In order to derive the R-SGD, the negative log-likelihood L
defined on Mp,k,n is rewritten

L(θ) =

n∑
i=1

Li(θ), (24)

where Li is the negative log-likelihood defined on the sample
xi. Hence, the same notation applies to the negative log-
likelihood (5) defined on Mp,k,n: L(θ) =

∑n
i=1 Li(θ). In

short, given the actual iterate θ(t), an iteration of R-SGD
proceeds in three steps: (i) a set A of samples is randomly
drawn from {xi}ni=1, (ii) then the gradient of

∑
xi∈A Li(θ

(t))
is computed, (iii) finally a new iterate is given by retracting
minus the gradient times a step size. Since a retraction on
Mp,k,n is provided in Section III-B, the only remaining
element to provide is the Riemannian gradient of Li(θ). This
gradient is given in the following proposition:

Proposition 2 (Riemannian gradient). Given θ = π (U , τ ) ∈
Mp,k,n represented by θ = (U , τ ) ∈Mp,k,n, the representa-
tive in HU × Tτ (R++)n of the Riemannian gradient of Li at
θ is

gradLi(θ) = (GU ,Gτ )

where

GU = − τi
ncτ (1 + τi)

(Ip −U UH)xix
H
i U ,

and the jth element of Gτ is

(Gτ )j =

{
1 + τi − 1

kx
H
i UU

Hxi for j = i

0 otherwise.

Proof. See appendix B.

Following from this gradient, the resulting R-SGD onMp,k,n

is detailed in the box Algorithm 1. Concerning the computa-
tion of the step size, several options exist. When the gradient is
computed on all data, i.e A = {xi}ni=1, a line search (e.g. [14,
4.2]) is recommended. When the gradient is computed on a
subset of all data, a step size proportional to 1/t, where t is
the number of iterations, can be used as in [28].

By rearranging the operations of GU in Proposition 2, the
computational complexity of the gradient of

∑
xi∈A Li(θ) is

O(mpk+n), where m the number of samples in A. In practice,
cτ can be approximated using only the textures associated
with the samples in A, i.e. cτ ≈ 1

m

∑
xi∈A

τ2
i

1+τi
. Hence,

the complexity of the gradient becomes O(mpk). Then, the
complexity of the retraction (16) is O(pk2 + m), as we
only retract the non-zero elements of the gradient Gτ from
Proposition 2. Hence, the total complexity of each iteration of
Algorithm 1 is O(mpk+ pk2), which is much lower than the
O(np2 + p3) of the BCD in [12] (which involves the SVD of
the scaled SCM at each step).
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Algorithm 1: Riemannian stochastic gradient descent

Input : Initial iterate θ
(1) ∈Mp,k,n.

Output: Sequence of iterates {θ(t)}.
t = 1
while no convergence do

Randomly draw a subset A ⊂ {xi}ni=1 and set
ξ(t) =

∑
xi∈A gradLi(θ

(t)
)

Compute a step size νt and set
θ
(t+1)

= R
θ
(t)(−νtξ(t))

t = t+ 1
end

B. Intrinsic Cramér-Rao bounds

Obtaining performance bounds for the model in (3) is a
complex issue, notably because the signal subspace is repre-
sented by a point in Grp,k. A first approach was proposed in
[7] for the model xi ∼ CN (0, τiGG

H+I), where G ∈ Cp×k
is a lower-triangular matrix with positive diagonal elements.
Such parameterization is carefully chosen in order to obtain
a minimal and essentially unconstrained parametrization of
the low-rank signal covariance matrix. This allows obtaining
the standard Cramér-Rao inequality for the parameter g =
vec(G). In a second step, the signal subspace is represented
by the orthogonal projection matrix Π = G(GHG)−1GH

and the CRB for π = vec(Π) is obtained as

CRB(π) =
∂π

∂gT
CRB(g)

∂πT

∂g
⇒ E

[
||Π− Π̂||2F

]
≥ Tr {CRB(π)}

(25)
thus enabling to assess approximately the minimum distance
between the estimated and the true signal subspace. Another
option could have been to start with the constrained parameter-
ization G = UD1/2 and to directly handle the orthonormality
constraints UHU = Ik with the the theory of constrained
CRLBs [32]–[35] to obtain CRB(vec(U)), then deriving the
same result as in (25) from π = vec(UUH). This method is
expected to yield the same result as in [7] from a different
path of derivations.

While the obtained inequality in (25) allows for an analysis
with numerical experiments, it still lacks some interpretable
closed-form. In the following, we will directly treat the signal
subspace as a point in Grp,k1 and rely on the intrinsic CRLB
theory from [18], [37]. The interest is twofold: first it will yield
a simple and interpretable closed form for the bound on the
subspace estimation. Second, this bound will be obtained for
natural distance on Grp,k in (19), which is expected to better
reflect breakdown points at low sample support (cf. [18] for
an example regarding covariance matrix estimation).

Intrinsic (i.e., manifold oriented) versions of the Cramér-
Rao inequality have been established [18] and extended to
quotient manifolds in [37]. The main difference compared to
the classical CRLBs is that the parameter θ is treated as being

1Note that we consider the case of equal eigenvalues, but this restriction
has been carefully motivated in the model introduction section. The extension
to the general case could be considered using recent derivations from [36] but
this complex issue goes far beyond the scope of the paper.

in a Riemmanian manifold endowed by an arbitrary chosen
“error” metric. The estimation error is thus measured using the
Riemannian distance d that emanated from this error metric.
The obtained inequality is of the form

C < F−1 + curvature terms, (26)

where C is the covariance matrix of the error vector (de-
fined as the Riemannian logarithm mapping logθ(θ̂), which
is induced by the error metric), and F−1 is the inverse of
the Fisher information matrix (which depends on both the
chosen metric and the Fisher information metric). Neglecting
the curvature terms and taking the trace of (26) yields the
inequality E

[
d2(θ, θ̂)

]
≥ Tr(F−1) for an unbiased estimator

θ̂, which will be here our primary interest.
In our context, we consider Mp,k,n endowed with the

decoupled metric in (17) (Definition 1) in order to bound the
error measure defined by d2Mp,k,n

as in (18). For the sake of
exposition, the obtained results are directly reported in the two
following propositions, while the technical details are let in the
Appendix C.

Proposition 3 (Fisher information matrix). The Fisher infor-
mation matrix Fθ on Mp,k,n admits the structure

Fθ =

(
FU 0
0 Fτ

)
,

with the blocks FU = 2α−1 n cτ I2(p−k)k, and Fτ =
β−1 k diag

(
τ�2 � (1 + τ )�−2

)
, and where diag(·) returns

the diagonal matrix formed with the elements of its argument.

Proof. See Appendix C.

Proposition 4 (iCRLB). Let {xi}ni=1 be a sample set follow-
ing the model in (3). Let θ̂ be an estimate of θ ∈ Mp,k,n for
the model. The estimation error defined by d2Mp,k,n

as in (18)
is bounded as

E[d2Mp,k,n
(θ̂, θ)] ≥ αCRBU + β CRBτ . (27)

where

CRBU =
(p− k) k
n cτ

and CRBτ =
1

k

n∑
i=1

(1 + τi)
2

τ2i
.

Furthermore, two iCRLB, on Grp,k and (R++)n respectively,
are given by

E[d2Grp,k(π(Û), π(U))] ≥ CRBU , (28)

E[d2(R++)n(τ̂ , τ )] ≥ CRBτ . (29)

Proof. See Appendix C.

Notice that the problem of estimating a subspace should
not depend on its basis U , as two estimates Û and ÛQ yield
the same subspace estimate (but would yield different MSEs
for the basis U ). The obtained bound on d2Grp,k satisfies this
property. Furthermore, Proposition 4 shows that the subspace
estimation problem for model (3) does not depend on the
underlying subspace itself, but rather only on its dimension
and the SNR, which is theoretically appealing. Conversely,



8

the euclidean CRLBs in [7], bounding the MSE on UUH

(orthogonal projector) as in (25) does not exhibit such direct
interpretability. Finally, in the specific case of data following
a Gaussian low-rank (spiked) model for which τi = SNR so
that x ∼ CN (0,SNR×UUH + Ip), we retrieve the iCRLB
of [18, Eq.145], i.e.,

E[d2Grp,k(π(Û), π(U))] ≥ (p− k) k (1 + SNR)
nSNR2 . (30)

V. RIEMANNIAN CLUSTERING

In this section, we apply the statistical model developed in
Section II with its Riemannian geometry Mp,k,n, presented
in Section III-C, to clustering problems. More specifically, we
assume that we have M batches Xi (e.g. sets of local pixels
of an image, EEG epochs of measurements, etc). Each Xi ∈
Cp×n is a column-wise concatenation of n observations xi ∈
Cp defined in Section II. Furthermore, each batch Xi belongs
to an unknown class y ∈ J1,KK.

The use of statistical descriptors is a classical procedure
in machine learning as they are often more discriminative
than raw data (see e.g. [19], [20]). Hence, we begin by
estimating a descriptor θi ∈Mp,k,n of the batch Xi following
Section IV-A. Then, the aim is to partition the descriptors
{θi}Mi=1 in S = {S1, S2, · · · , SK}. Thus, we get a partition of
the original batches {Xi}Mi=1.

Each parameter θi is represented by a couple, i.e. θi =
π (Ui, τi). Our contribution is to cluster both components
(subspace and power) in a unified manner, leveraging the
geometry of Mp,k,n featured in Section III-C. This sec-
tion is focused on the application of a K-means++ [21]
on Mp,k,n with the tools developed earlier. However, the
proposed methodology is flexible: (i) descriptors θi can be
replaced by other statistical estimates with their associated
Riemannian geometries, (ii) many Euclidean based clustering
algorithms can be transformed to Riemannian ones (replacing
distances and means by their Riemannian counterparts).

A. Distance and mean computations

Most clustering algorithms, including K-means++ [21],
rely on distance and mean computations. Since θi lies on
a Riemannian manifold we first need to define distance and
mean computations other than simple Euclidean ones.

A natural choice is the use of the distance dMp,k,n
defined

in (18). In the context of clustering, the distance on Grp,k and
the one on (R++)n do not necessarily have the same amplitude
or the same ability to discriminate. Thus, the parameters α, β
of the metric of Definition 1 are to be chosen carefully. We
propose a 2-step strategy to select α, β: (i) correction of the
scale effect and (ii) choice of a trade-off between the distances
on Grp,k and (R++)n. To correct the scale effect we propose
to normalize the squared distances by their mean values on
the samples {θi}Mi=1. Then, a trade-off can be made between
the two distances. More precisely, ∀γ ∈ [0, 1], we define

α =
1− γ

1
M2

∑
q,l∈J1,MK d

2
Grp,k(Uq,Ul)

,

β =
γ

1
M2

∑
q,l∈J1,MK d

2
(R++)n(τq, τl)

.
(31)

It remains to define a mean computation algorithm on a
set of parameters Sj . In [38], the mean of a set of points
on a Riemannian manifold is defined as the minimizer of the
variance of this set. Let m = #Sj , the variance V of Sj at
θ = π(θ) ∈Mp,k,n is defined as,

V (θ) =
1

m

∑
θi∈Sj

d2Mp,k,n
(θ, θi). (32)

The mean c = π(c) ∈ Mp,k,n of the set of points Sj is
obtained from the minimization of the variance,

c = argmin
θ∈Mp,k,n

1

2
V (θ). (33)

Denoting c = (U , τ ), one can check that the mean τ
corresponding to the distance d(R++)n is simply the geometric
mean

τ =

 �∏
θi∈Sj

τi

� 1/m

, (34)

where
�∏

is the elementwise product. Similarly, the mean
corresponding to distance dGrp,k is well-known [24]. Unfortu-
nately, no closed form is known to compute it. It is obtained
through the following iterative procedure: given U (t), the
iterate U (t+1) is obtained with

U (t+1) = exp
Grp,k
U(t)

νt
m

∑
θi∈Sj

log
Grp,k
U(t) (Ui)

 , (35)

where νt is the step size which can be computed thanks to a
line search [14]. Since we get one mean per class, in the rest
of the paper, the mean of Sj is noted cj .

B. K-means++ on Mp,k,n

With the distance and mean computation algorithms ex-
plained above, we use a K-means++ on Mp,k,n to partition
{θi}Mi=1 in S (and thus partition {Xi}Mi=1).

Instead of choosing class centers cj uniformly at random
from {θi}Mi=1, K-means++ initializes them by recursively
choosing a new center θi with probability D(θi)

2∑
θj
D(θj)2

[21].

Here, D(θi) denotes the distance dMp,k,n
from θi to the closest

center among those already chosen.
Once these class centers are initialized, K-means++ on
Mp,k,n iteratively applies two steps [21]:

(i) Assignment step: each θi is assigned to the cluster Sj
whose center cj is the closest using the distance dMp,k,n

,
(ii) Update step: each new class center cj is computed using

(34) and (35).

Once terminated, K-means++ onMp,k,n outputs the partition
S. Intuitively, K-means++ finds clusters Sj whose points θi ∈
Sj are close to each other using the distance dMp,k,n

.
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C. Theoretical properties

To analyze the performance of K-means++ on Mp,k,n, we
begin by defining the within-cluster sum of squares (WCSS),

φ(S) =

K∑
j=1

∑
θi∈Sj

d2Mp,k,n
(cj , θi). (36)

A “good” clustering algorithm finds a partition whose asso-
ciated φ is close to the minimum φOPT of the WCSS (36). In
the Euclidean case, [21] establishes that the Euclidean WCSS
of a partition produced by K-means++ is upper bounded with
respect to φεOPT (minimum of the Euclidian WCSS). This
property is central to K-means++ since it is proven that a
plain K-means [39] cannot admit such a bound. Moreover,
this bound is true from the initialization. As stated in [40], this
result in the Euclidean case holds for any distance (thus for
dMp,k,n

) and does not rely on the mean computation. Hence,
the WCSS (36) of the K-means++ initialization on Mp,k,n

satisfies
E[φ] ≤ 8(lnK + 2)φOPT (37)

where the expectation is taken with respect to the seeding
procedure.

Moreover, “Assignment step” and “Update step” from
Algorithm 2 decrease WCSS (36). Indeed, the “Assignment
step” directly decreases the WCSS (36) by assigning points
{θi}Mi=1 to the closest centers. Furthermore, we defined, in
(33), the mean of Sj as the minimizer of the variance. It
follows that ∀Sj ∈ S,∑

θi∈Sj

d2Mp,k,n
(θ(t), θi) ≥

∑
θi∈Sj

d2Mp,k,n
(θ(t+1), θi), (38)

where θ(t) and θ(t+1) are the means taken before and after
the “Update step” respectively. Hence, the “Update step”
decreases the WCSS (36). This implies that the final clustering
returned by K-means++ on Mp,k,n satisfies (37).

However, this clustering is not necessarily a global min-
imum of WCSS (36). Hence, a standard practice is to run
the algorithm several times with different initializations and
then to keep the clustering with the lowest inertia (36). K-
means++ onMp,k,n with the strategy of several initializations
is presented in Algorithm 2.

VI. NUMERICAL EXPERIMENTS

A. Simulations

This section illustrates the performance of the Algorithm 1
as well as the Cramér-Rao bounds developed in section IV.
The covariance matrix of the simulated data follows the
model Σi = Ip + τiU U

H . The basis U is a random
matrix in Stp,k. The textures τi are randomly drawn from a
Log-normal(− s

2

2 , s
2) multiplied by the desired SNR. Hence,

we get E[τi] = SNR. The shape parameter s2 controls the
heterogeneity of the textures: the higher the s2, the greater the
heterogeneity. We generate sets {xi}ni=1, with n ∈ J10, 1000K,
from the zero mean complex Gaussian multivariate distribution
with covariance Σi. For each value of n, N sets {xi}ni=1 are
simulated and estimators Û , τ̂ are computed in each case.

Algorithm 2: K-means++ on Mp,k,n

Input : A set {θi}Mi=1 ⊂Mp,k,n to partition, a
number of clusters K and a number of
initializations l.

Output: Best partition S?.
φ? ← +∞
for 1 to l do

# Initialization
Take one center c1, chosen uniformly at random

from {θi}Mi=1.
while #{ci} < K do

Take a new center cj , choosing θi ∈ {θi}Mi=1

with probability D(θi)
2∑

θm
D(θm)2 .

end
# K-means
while no convergence do

Assignment step: ∀i ∈ J1,MK assign θi to the
cluster Sj with the nearest cj , j ∈ J1,KK.

Update step: Calculate new centers cj of
clusters Sj , ∀j ∈ J1,KK, using (34) and (35).

end
Compute φ(S) with (36).
if φ(S) < φ? then

S? ← S
φ? ← φ(S)

end
end

Here are the considered estimators in the simulations:
1) SCM: the k first principal eigenvectors of the SCM of
{xi}ni=1 are concatenated to get USCM.

2) BCD: the MLE estimate is done using BCD algorithm
on {xi}ni=1 [12] . The estimators are denoted UBCD and
τBCD.

3) RGD: Algorithm 1 is performed using all samples at each
iteration, i.e. A = {xi}ni=1. Pymanopt library [41] (builds
upon the Manopt library [42]) achieves this optimization.
The estimators are denoted URGD and τRGD.

To measure the subspace estimation performance of the
considered estimators, we compute the mean squared error
(MSE) between the estimators Û ∈ {USCM,UBCD,URGD}
and the real parameter U . We compute the MSE as the mean
squared distance on Grp,k (19) between estimated parameters
Û and real parameter U . Texture estimation performance is
also assessed. The MSE is computed between the estimators
τ̂ ∈ {τBCD, τRGD} and real parameter τ as the mean squared
distance on (R++)n (19).

The subspace estimation performance is studied for two
different s2 along two SNR in Figure 2. Firstly, we observe
that our proposed estimation algorithm performs identically to
the block coordinate algorithm [12] in every scenario. Also,
both estimators are statistically efficient, i.e. reach the lower
bound (28) when n is sufficiently large. Finally, in the case
of a low SNR (i.e., SNR = 1), the block coordinate descent
and our Riemannian gradient descent outperform the projected
SCM regardless of texture heterogeneity.
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# Class Number of samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 718
4 Corn 229
5 Grass-pasture 438
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 943
11 Soybean-mintill 2371
12 Soybean-clean 577
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 290
16 Stone-Steel-Towers 93

Total 9859

TABLE II: Indian Pines [22] classes.

Figure 3 presents the texture estimation error as a function
of SNR with two different s2. Firstly, our proposed estima-
tion algorithm performs identically to the block coordinate
algorithm [12]. Interestingly, the rate of convergence of the
estimation error in the case of low heterogeneity, i.e. s2 = 2, is
much faster than in the case of high heterogeneity, i.e. s2 = 4.
Moreover, both estimators reach the lower bound (29) for a
high enough SNR.

A final simulation is conducted on high dimensional data. In
Section IV, we recalled that the complexity of the BCD grows
linearly with the number of data n and quadratically with the
dimension p of the data. Hence, the BCD is no longer practi-
cable when both n and p get large. However, in Section IV,
we showed that the R-SGD proposed in Algorithm 1 has a
constant complexity for the number of data and linear for the
dimension of the data. Figure 4 illustrates this situation with
n ∈ J103, 104K, p = 104 and k = 10 (dimensions for which
the iteration of BCD cannot be computed on the tested setup).
This shows the efficiency of the proposed R-SGD.

B. Clustering: application to image segmentation

To illustrate the interest of the Riemannian geometry
Mp,k,n and of the parameters of the statistical model (3) used
as descriptors, we apply the Algorithm 2 to a hyperspectral
image segmentation problem. We cluster a 145 × 145 pixels
hyperspectral image called Indian Pines [22]. This image con-
sists of p = 200 spectral reflectance bands in the wavelength
range 0.42.5µm. The Figure 5 shows the ground truth and
divides the image in 16 classes (see Table II for details).

After centering the image by subtracting the global mean,
a sliding window of size w ×w is applied to the image. One
descriptor θi is estimated using the n = w2 observations in
each window denoted Xi ∈ Rp×n. Thus, we get a set of
descriptors {θi} to cluster using a K-means++ [21].

We compare the descriptors of the considered statistical
model (HS+WGN) with different descriptors and geometries.
Due to the data’s high dimensionality, some methods require
a PCA on the whole image as a preprocessing. Then, we keep
only the k first components. We begin by presenting these
different methods:

1) “center pixel”: we extract the center vector of the window.
K-means++ cluster these pixels using the Euclidean
metric (i.e., classical inner product). It amounts to cluster
directly the image using a classical K-means++.

2) “mean pixel”: we average the pixels inside the win-
dow. Then K-means++ cluster these means using the
Euclidean metric.

3) “SCM”: we compute the SCM using pixels inside the
window. K-means++ cluster these matrices using the Rie-
mannian geometry of symmetric positive definite matrices
S++
p (see [43]–[45]).

Next, we present the different methods that take into ac-
count this high dimensionality. Therefore, we do not use any
dimensional reduction preprocessing.

1) “subspace SCM”: the k first eigenvectors of the SCM are
retained. Then, they are clustered using a K-means++ on
Grp,k.

2) “robust subspace γ = 0”: our method. Subspaces and
textures are estimated following statistical model (3).
Only the subspaces are clustered using a K-means++
on Grp,k. σ2 is pre-estimated using the p − k lowest
eigenvalues of the SCM.

3) “robust subspace γ > 0”: our method. Subspaces and
textures are estimated following statistical model (3). The
textures and subspaces are clustered using a K-means++
on Mp,k,n as explained in Section V and detailed in
Algorithm 2. σ2 is pre-estimated using the p− k lowest
eigenvalues of the SCM.

Because Indian Pines [22] has 16 classes, we set the number
of clusters K to 16. Furthermore, we set k = 5. Indeed, from
Figure 6, we observe that the first 5 principal eigenvectors
of the SCM calculated on Indian Pines [22] contain more
than 95% of the total variance. Since we use an unsupervised
algorithm, the output classes are not necessarily the same
as the ground truth. Hence, a KuhnMunkres algorithm is
applied to the segmentation to recover ground truths classes.
Furthermore, we do 10 different initializations (parameter l
in Algorithm 2) and keep the clustering with the lowest
inertia (36). To measure the variability of the results, each
K-means++ is run 10 times. The averaged Overall Accuracy
(OA), as well as the averaged mean Intersection over Union
(mIoU), are reported with their standard deviations (std) in
Table III.

First of all, the methods based on non-Euclidean geometries
all surpass the other methods (“center pixel” and “mean pixel”)
by at least 8.9% in terms of averaged Overall Accuracy.
This proves the interest in using Riemannian geometries other
than the simple Euclidean one. Secondly, “robust subspace,
γ = 0” slightly exceeds “subspace SCM” which shows the
interest of robust estimation of subspaces. Thirdly, “robust
subspace” with γ = 0.1 outperform “robust subspace γ = 0”
by nearly 4%. Finally, our method “robust subspace γ = 0.1”
outperforms the strong baseline “SCM” by 2.8% in terms
of Overall Accuracy. However, “SCM” performs better in
terms of mIoU, by nearly 2%, compared to “robust subspace,
γ = 0.1”. This means “SCM” better classifies classes with
small number of samples.
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Fig. 2: MSE over N = 100 simulated sets {xi} (p = 100 and k = 20) with respect to the number of samples n for the three considered
estimators. The textures are generated with s2 = 4 (left part), s2 = 2 (right part), SNR = 1 (upper part), SNR = 10 (lower part).
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Fig. 3: MSE over N = 100 simulated sets {xi} (n = 104, p = 100 and k = 20) with respect to the SNR for the BCD and RGD estimators.
The textures are generated with s2 = 4 (left) and s2 = 2 (right).
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Fig. 4: MSE over N = 100 simulated sets {xi} (p = 104 and
k = 10) with respect to the number of samples n for the R-SGD
estimator. 150 samples are used for each computation of the gradient.
The textures are generated with s2 = 2 and SNR = 103.

As mentioned in Section V, a trade-off must be made
between the subspaces’ distance and textures’ distance. A hy-
perparameter γ ∈ [0, 1] realizes this trade-off. Figure 7 shows
that our method “robust subspace” outperforms the “SCM”
when we emphasis the Grp,k distance. Figure 7 illustrates that
our method works for an interval of γ and therefore does not
need a critical choice to maximize Overall Accuracy. However,
to maximize mIoU, the smaller γ the better.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

Ground truth

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Fig. 5: Ground truth of image Indian Pines [22]. The back-
ground (no class available) is represented by class 0.

Figure 9 presents the segmentations of 4 methods: “center
pixel”, “SCM”, “robust subspace γ = 0” and “robust subspace
γ = 0.1”. The segmentations are those with the lowest inertia
(36) for each method. We note a significant improvement
occurs on class 14 (lower right part) between baseline “SCM”
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Fig. 6: Cumulative variance, i.e.
∑k
i=1 λi/

∑p
i=1 λi, with

respect to k ∈ J1, 30K. {λi}pi=1 are the eigenvalues in de-
scending order of the SCM computed with all pixels of Indian
Pines [22]. Only the first 30 eigenvalues out of p = 200 are
plotted. We notice that the first 5 principle eigenvectors contain
more than 95% of the cumulative variance.

PCA Descriptor OA± std mIoU± std

Yes
center pixel 32.66± 0.84 18.30± 0.82
mean pixel 34.02± 0.48 20.17± 2.00

SCM 45.08± 1.58 29.95 ± 1.87

No
subspace SCM 42.95± 0.71 27.06± 0.76

robust subspace, γ = 0 43.93± 0.93 28.11± 0.63
robust subspace, γ = 0.1 47.89 ± 2.67 28.00± 1.49

TABLE III: Performance of the different descriptors on Indian
Pines [22] with w = 7 and k = 5.

in Figure 9b and our method “robust subspace γ = 0.1” in
Figure 9d. Also, the textures help to better cluster classes 8
and 14, see Figure 9c versus 9d.

Finally, our method “robust subspace γ = 0.1” converges
quickly, i.e. in less than 20 iterations (see Figure 8). Interest-
ingly, the WCSS (36) decreases a lot in the first iterations and
hence the K-means++ can be stopped after few iterations to
faster computation.

VII. CONCLUSION

This paper proposed to study the information geometry of
heteroscedastic signals embedded in WGN. This geometric
approach offered a unified framework in order to i) derive
new optimization algorithm based on Riemannian stochastic
gradient descent; ii) obtain iCRLBs (error bounds driven by
a Riemannian distance) with interesting interpretations; iii)
propose a new Riemannian clustering algorithm based on the
model features, which was applied it to a hyperspectral image
to illustrate the interest of the approach.

APPENDIX

A. Proof of Proposition 1

By definition of the Fisher information metric [18],

〈ξ, η〉FIM
θ

= E[DL(θ)[ξ] DL(θ)[η]] = −E[D2 L(θ)[ξ, η]]

L defined in (5) can be written as

L(θ) =

n∑
i=1

Lgxi(ψi(θ)),
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Fig. 7: Overall accuracy and mIoU of our method ”robust
subspace” with respect to parameter γ on Indian Pines [22]
with w = 7 and k = 5. Mean performance are reported with
their standard deviations (with error bars for ”robust subspace”
and in dashed blue lines for ”SCM”).
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Fig. 8: WCSS (36) with respect to the number of iterations of
K-means++ [21] for “robust subspace” γ = 0.1 corresponding
to Figure 9d. The curves correspond to the 10 initializations.

where Lgx(Σ) = log |Σ|+ xHΣ−1x is the negative Gaussian
log-likelihood on H++

p . Thus, following the reasoning of [36,
Proposition 6] and [27, Proposition 3.1], one can show

〈ξ, η〉FIM
θ

=

n∑
i=1

〈Dψi(θ)[ξ],Dψi(θ)[η]〉FIM,g
ψi(θ)

, (39)

where 〈ξΣ,ηΣ〉FIM,g
Σ = Tr(Σ−1ξΣΣ−1ηΣ) is the Fisher

information metric of the Gaussian distribution on H++
p ;

see e.g. [18]. The definition (4) of ψi(θ) and Dψi(θ)[ξ] =
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(a) “center pixel”: OA = 31.2%, mIoU = 18.8%

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(b) “SCM”: OA = 45.2%, mIoU = 31.5%
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(c) “robust subspace γ = 0”: OA = 43.3%, mIoU = 27.3%
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(d) “robust subspace γ = 0.1”: OA = 47.2%, mIoU = 29.3%

Fig. 9: Indian Pines [22] segmentation results achieved using 4 methods: “center pixel”, “SCM”, “robust subspace” γ = 0
and “robust subspace” γ = 0.1 (w = 7 and k = 5 for all methods). These segmentations are those with the lowest WCSS
computed with their respective distances.

τi(Uξ
H
U + ξUU

H) + (ξτ )iUU
H yields

〈Dψi(θ)[ξ],Dψi(θ)[η]〉FIM,g
ψi(θ)

=

(ξτ )i(ητ )i〈UUH ,UUH〉FIM,g
ψi(θ)

+ (ξτ )i τi〈UUH ,UηHU + ηUU
H〉FIM,g

ψi(θ)

+ τi (ητ )i〈UξHU + ξUU
H ,UUH〉FIM,g

ψi(θ)

+ (τi)
2 〈UξHU + ξUU

H ,UηHU + ηUU
H〉FIM,g

ψi(θ)

(40)

Then we compute each term separately:

〈UUH ,UUH〉FIM,g
ψi(θ)

=
k

(1 + τi)2
(41)

〈U UH ,U ηHU + ηU U
H〉FIM,g

ψi(θ)
= 0 (42)

〈U ξHU + ξU U
H ,U UH〉FIM,g

ψi(θ)
= 0 (43)

〈UξHU + ξUU
H ,UηHU + ηUU

H〉FIM,g
ψi(θ)

=

2

1 + τi
Re
(
Tr
(
ξHUηU

)) (44)

The Fisher information metric stated in Proposition 1 is
obtained by combining eqs. (39) to (44).

B. Proof of Proposition 2

Since Grp,k is a quotient manifold of Stp,k, gradLi(θ) is
represented by gradLi(θ) ∈ HU ×Tτ (R++)n. By definition,
∀ξ ∈ TθMp,k,n, DLi(θ)[ξ] = 〈gradLi(θ), ξ〉FIM

θ
[14]. Notice

that
∣∣ψi(θ)∣∣ = (1 + τi)

k and (ψi(θ))
−1 = Ip−

τi
1 + τi

U UH

(Woodbury formula). It follows that

DLi(θ)[ξ] = −2
τi

1 + τi
Re
(
Tr
(
xix

H
i Uξ

H
U

))
+
k (1 + τi)− xHi U UH xi

(1 + τi)2
(ξτ )i

= 2ncτ 〈−
τi

ncτ (1 + τi)
xi x

H
i U , ξU 〉

Stp,k
U

+ 〈a, ξτ 〉(R
++)n

τ

where a ∈ Rn is a vector such that

aj =

{
1 + τi − 1

kx
H
i UU

Hxi for j = i

0 otherwise.

To obtain the Riemannian gradient gradL(θ) by identification,
it remains to project − τi

ncτ (1+τi)
xi x

H
i U onto HU with

P
Grp,k
U (ξU ) =

(
Ip −U UH

)
ξU [14], which is enough to

conclude.
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C. Proof of Proposition 3 and 4

In this section we derive the elements of the generic iCRLB
inequality (26) for the estimation problem of θ ∈ Mp,k,n

(and data model in (3)) when the chosen error metric is (17).
Following from [18] the estimation error between θ and θ̂
is characterized by logθ(θ̂), i.e., the Riemannian logarithm
mapping induced by the error metric (which is defined in (20)).
Recall that this object corresponds to a vector of TθMp,k,n

that points towards θ̂ and whose norm with respect to the error
metric is d2Mp,k,n

(θ, θ̂) as defined in (18). Hence we directly
have Tr(C) = Tr(E[logθ(θ̂) logθ(θ̂)H ]) = E[d2Mp,k,n

(θ, θ̂)]
by definition. Yet, we still we need to select a proper system of
coordinates of the tangent space TθMp,k,n so that the entries
of F−1 can be actually obtained: Mp,k,n being a quotient
manifold, there are two solutions in order to represent this
object. The first one is to simply consider coordinates of
TθMp,k,n without restrictions. The resulting Fisher informa-
tion matrix will then be singular, but its pseudo-inverse still
yields the desired inequality [37]. The second option, which
will be chosen here, is to consider only coordinates in the
horizontal space Hθ, which is given in our case in (13).

Two ingredients are thus needed to establish the Fisher
information matrix as in (26):

(i) The Fisher information metric 〈·, ·〉FIM
θ

, which was given
in Proposition 1.

(ii) A basis of the horizontal space Hθ in (13) that is
orthonormal with respect to the error metric (i.e., the
decoupled metric in (17)), which is given in the following
proposition.

Proposition 5 (Orthonormal basis). Given θ ∈ Mp,k,n, an
orthonormal basis of the horizontal space Hθ defined in (13)
with respect to the Riemannian metric of Definition 1 is

{eq
θ
}1≤q≤2(p−k)k+n = BU ∪Bτ ,

with

BU =
⋃

1≤i≤p−k
1≤j≤k

{(
α−

1
2U⊥Kij ,0

)
,
(
α−

1
2 iU⊥Kij ,0

)}
,

Bτ =
⋃

1≤i≤n

{(0, β− 1
2 τiei)},

where U⊥ ∈ Stp,p−k such that UH U⊥ = 0; Kij ∈
R(p−k)×k: its ijth element is 1, zeros elsewhere; and ei ∈ Rn:
its ith element is 1, zero elsewhere.

Proof. As {eq
θ
} contains the right amount of elements, it

suffices to show that, ∀q, l ∈ J1, 2(p − k)k + nK such that
q 6= l, we have 〈eq

θ
, el
θ
〉Mp,k,n

θ
= 0 and 〈eq

θ
, eq
θ
〉Mp,k,n

θ
= 1.

This can easily be checked by calculation.

Using this system of coordinates, the qlth element of the Fisher
information matrix Fθ is then represented by

(Fθ)ql = 〈eqθ, e
l
θ
〉FIM
θ
. (45)

Remarkably, Fθ will turn to be diagonal which enables us to
obtain closed forms iCRLB on Mp,k,n, Grp,k and (R++)n

respectively. To show that Fθ is block diagonal, it suffices to

notice that there are no crossed terms between tangent vectors
of U and τ in the Fisher information metric of Proposition 3.
Computing the elements of FU yields

〈(α− 1
2UKij ,0), (α

− 1
2UKlm,0)〉FIM

θ

=

{
2α−1 n cτ if ij = l m

0 otherwise

〈(α− 1
2 iUKij ,0), (α

− 1
2 iUKlm,0)〉FIM

θ

=

{
2α−1 n cτ if ij = l m

0 otherwise

〈(α− 1
2UKij ,0), (α

− 1
2 iUKlm,0)〉FIM

θ
= 0

Hence, FU = 2α−1 n cτ I2 (p−k) k. Computing the elements
of Fτ yields

〈(0, β− 1
2 τiei), (0, β

− 1
2 τjej)〉FIM

θ

= β−1 k
τi τj

(1 + τi) (1 + τj)
eTi ej

=

β−1 k
τ2i

(1 + τi)2
if i = j

0 otherwise

Hence, Fτ = β−1k diag
(
τ�2 � (1 + τ )�−2

)
, which con-

cludes the part concerning the proof of Proposition 3.
Finally, we note that

Tr
(
F−1U

)
=
α(p− k) k

n cτ
and Tr

(
F−1τ

)
=
β

k

n∑
i=1

(1 + τi)
2

τ2i
.

Furthermore, we get,

Tr
(
F−1θ

)
=
α(p− k) k

n cτ
+
β

k

n∑
i=1

(1 + τi)
2

τ2i
.

It follows that the error of an unbiased estimator θ̂ of the true
parameter θ in Mp,k,n admits the iCRLB

E[d2Mp,k,n
(θ̂, θ)] ≥ Tr

(
F−1θ

)
(46)

if we neglect the curvature terms when applying Theorem 2
of [18]. Since Fθ is block-diagonal we also get two separated
iCRLB for the parameters on Grp,k and (R++)n respectively,
i.e.:

E[d2Grp,k(π(Û), π(U))] ≥ α−1 Tr(F−1U ) =
(p− k)k
ncτ

, (47)

E[d2(R++)n(τ̂ , τ )] ≥ β
−1 Tr(F−1τ ) =

1

k

n∑
i=1

(1 + τi)
2

τ2i
. (48)

This concludes the proof of Proposition 4.
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