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Introduction

Many signal processing applications require first and second order statistical moments of
the sample set {x;}" ;. To be robust to heavy-tailed distributions or outliers, [1] proposed
the M-estimators:
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where t; £ (x; — p)? X7 (x; — p), up and uy are functions that respect Maronna’s condi-
tons [1].

Under certain conditions [1],
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converge towards a unique solution satisfying (1).

Data model

Let n data points x; € CP distributed according to the model:
Ti — o+ \/?iz%ui (3)

where p € C?, 7 € (R])", ¥ € SH," and u; ~ CN(0,1,). Hence, ; > 0, X > 0 and
det(X) = 1. Also, the textures 7; are assumed to be unknown and deterministic.

Thus, x; follows a Compound Gaussian distribution, i.e.
Ly CN(LL, TZZ) (4)
The set of parameters is M,,,, = C? x (R])" x SH ™.

Likelihood and MLE
Hence, V0 = (p, 7,3) € M,,,, the negative log-likelihood is
| | (; — )5 (; — )
L(f) = 2 log det (7;3) + - . (5)

By derivation we get that the Maximum Likelihood Estimate (MLE) satisfies
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Thus, (6) coincides with the fixed point (1) for u;(t) = us(t) = p/t but does not satisfy
Maronna'’s conditions. The associated fixed-point iterations (2) generally diverge in prac-
tice !
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Riemannian geometry

A tool of interest for constrained parameters
estimation is the Riemannian geometry. Briefly, a
Riemannian manifold is a couple (M, (-, -)31) where

= M is a smooth manifold (i.e. a locally Euclidean set).
= (-, y2%is an inner product, on TyM, called the
Riemannian metric.

The vector space TyM is called the tangent space
and is the linearization of M at 6.

Figure 1. A manifold M with its tangent
space Ty M.

With the Riemmanian geometry of M defined, we can optimize a function f: M — R.
For a full review on this topic: see |2, 3].

Minimization of the negative log-likelihood L. on M, ,

The goal is to minimize the negative log-likelihood (5):

f = arg min L(0). (7)
veM,,

where M,,,, = C? x (R})" x SH, ™.
M., Is a product manifold of sets which have well known Riemannian manifolds.

The tangent space of M, ,, at 0 denoted Ty M,, ,, is the product of the tangent spaces of
Cr, (RY)" and SH, " e,

ToM,, = {E € CP x R" x H, : Tr(Z7'¢y) = 0}, (8)
where H, is the Hermitian set.

Let &,n € Ty M, ,,, the Riemannian metric at 0 is defined as,
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product and power operators respectively,
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(/\/lp,n, (-, -).Mp’”) is a Riemannian manifold and all its geometrical elements are derived
from Riemannian geometries of C?, (R])", and SH, ™.

Optimization algorithm

Input : Initial iterate 6, € M, .

Output: Sequence of iterates {0}

k:=1;

& = — grad L(6,);

while no convergence do

Compute a step size oy, (e.g see [2, §4.2]) and set 0,1 = Ré\:p’“(akgk);

Compute .1 (e.g see [2, §8.3]) and set &1 == — grad L(0p41) + Brr T§:§Z+l(€k);
k=k+1;
end

Algorithm 1: Riemannian conjugate gradient [2]

= grad L(6;) is the Riemannian gradient, computed in Proposition 1,
- Ré\:p’" s a retraction provided in Section 3.1.

: Tg\:g’;l IS a vector transport provided in Section 3.1.

Numerical experiments

We estimate location p € C? and scatter matrix X € SH,; " from simulated data.
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Figure 2. Mean squared errors over 200 simulated sets {x;}!_; (p = 10) with respect to the number n of samples for
the considered estimators i € {uC, p™, uCY} and 3 € {EC, BVH" TV BTV 361

1. u®, °: Gaussian estimators.

2. £V#”: two-step estimation, {x;}7, are centered with u® then we estimate X using
Tyler's M-estimator [4].

3. . = Tyler's joint estimators of location and scatter matrix [4]. These estimators
corresponds to (1) with u(t) = /p/t and us(t) = p/t. It converges in practice.

4. YV Tyler's M-estimator with location known [4].

5. Our estimators u© and =“: a Riemannian conjugate gradient to minimize (5) on
M,,,, performed with the library Pymanopt [5].

1CC and ¢, Riemannian Conjugate Gradient estimators, perform better than other es-
timators.
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