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How to combine EEG datasets with different electrode configurations?

EEG signals are multivariate time series X € RE*L recorded with P sensors at 7' time steps.

In this work we represent the EEG signal by its spatial covariance matrix C € REXE.
Causes of variability in EEG data: BNCI2014 001 BNCI2014 004 PhysionetMI
e Subject and population differences: size of the head, 508
age, body posture, individual brain anatomy... o 500 000
e Recording devices: electrode type, number and loca- L e P Bec o oog®
tion on the scalp, amplifier conditions... ’ e ® ¢
e Experimental protocol: task performed during record-
: Shin2017A Weibo2014 Zhou2016
ing, eyes closed or open...
All these differences can lead to shifts in the data dis- ) . _ .
tributions, referred to as dataset shift [2]. Thus, a ma- co , e PPl
chine learning model trained on a dataset is not directly o pen e '
generalizable to a new datasets recorded in a different .o <XI> Yy

context.

— Focus: Find a way to combine EEG datasets with
different number of electrodes and varying positions, specifically when the number of common channels across
datasets is insufficient.

Domain adaptation framework: We consider M datasets with different numbers of sensors P; with
9 =1,..., M. We aim to train a model on M — 1 datasets, called the source datasets, and test it on the
left-out dataset, called the target dataset.

Processing pipeline

Covariance-based classification pipeline [1]:
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Re-center: In covariance-based BCl classification, the preferred transfer learning technique is to re-center every
dataset to a common reference point on the manifold [7]:

—1/2

C(rct) —C __1/2

cC (1)

Baseline methods:
e Common channel selection
e Dimensionality Transcending (DT) [6]: geometry-based imputation

e Comlmp [4]: signal-based imputation

Overall pipeline:
EEG Signals
!

Preprocessing

filtered epochs
(

X
SSI ]

Covariance Estimation

Proposed approach: field interpolation

Common usage: to reconstruct the signal of malfunctioning or too noisy channels.

Our idea: to use interpolation to map EEG signals from different electrode configura- Final positions
tions to a fixed template of positions. L
Principle of interpolation: A linear operator A € RE*L is constructed to map the s® © o0
P; existing EEG channels to the P positions of the final template: o W

A

X =AX
with X € RYi*?" the recorded EEG signals and X € REP*T the reconstructed signals.

Two techniques:
e Spherical spline interpolation (SSI): projects positions onto a unit sphere and uses smooth functions to inter-
polate the starting positions to the final ones [5].

o Field interpolation (Fl): estimates the generators activity in the brain and maps them to the final positions using
a forward model based on Maxwell's equations [3].

Empirical benchmark

covariances
C
Y Yy Yy
Re-Center
Projection and Vectorization
tangent vectors l
Z " " "
Logistic Regression
}
Predictions

Datasets: 6 public BCl datasets, right hand/left hand classification.
Leave-one-dataset-out validation: Each plot corresponds to one target left-out dataset. The other datasets
were successively combined to form the training set in order to have an increasing number of target channels seen
In train.
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Dimension matching methods
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Conclusion

e F| outperformed other approaches when few common channels are shared between source and target.

e F| performed similarly to other methods when a large variety of data is available.

e Interpolation can be applied to raw data before feature extraction.
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