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How to combine EEG datasets with different electrode configurations?

EEG signals are multivariate time series X ∈ RP×T recorded with P sensors at T time steps.
In this work we represent the EEG signal by its spatial covariance matrix C ∈ RP×P .

Causes of variability in EEG data:
• Subject and population differences: size of the head,
age, body posture, individual brain anatomy...

• Recording devices: electrode type, number and loca-
tion on the scalp, amplifier conditions...

• Experimental protocol: task performed during record-
ing, eyes closed or open...

All these differences can lead to shifts in the data dis-
tributions, referred to as dataset shift [2]. Thus, a ma-
chine learning model trained on a dataset is not directly
generalizable to a new datasets recorded in a different
context.

→ Focus: Find a way to combine EEG datasets with
different number of electrodes and varying positions, specifically when the number of common channels across
datasets is insufficient.

Domain adaptation framework: We consider M datasets with different numbers of sensors Pj with
j = 1, . . . ,M . We aim to train a model on M − 1 datasets, called the source datasets, and test it on the
left-out dataset, called the target dataset.

Processing pipeline

Covariance-based classification pipeline [1]:
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Re-center: In covariance-based BCI classification, the preferred transfer learning technique is to re-center every
dataset to a common reference point on the manifold [7]:
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(1)

Baseline methods:

• Common channel selection

•Dimensionality Transcending (DT) [6]: geometry-based imputation

• ComImp [4]: signal-based imputation

Overall pipeline:
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Proposed approach: field interpolation

Common usage: to reconstruct the signal of malfunctioning or too noisy channels.
Our idea: to use interpolation to map EEG signals from different electrode configura-
tions to a fixed template of positions.
Principle of interpolation: A linear operator A ∈ RP×Pj is constructed to map the
Pj existing EEG channels to the P positions of the final template:

X̂ = AX (2)

with X ∈ RPj×T the recorded EEG signals and X̂ ∈ RP×T the reconstructed signals.

Two techniques:
• Spherical spline interpolation (SSI): projects positions onto a unit sphere and uses smooth functions to inter-
polate the starting positions to the final ones [5].

• Field interpolation (FI): estimates the generators activity in the brain and maps them to the final positions using
a forward model based on Maxwell’s equations [3].

Empirical benchmark

Datasets: 6 public BCI datasets, right hand/left hand classification.

Leave-one-dataset-out validation: Each plot corresponds to one target left-out dataset. The other datasets
were successively combined to form the training set in order to have an increasing number of target channels seen
in train.

Conclusion
• FI outperformed other approaches when few common channels are shared between source and target.

• FI performed similarly to other methods when a large variety of data is available.

• Interpolation can be applied to raw data before feature extraction.
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[4] Thu Nguyen, Rabindra Khadka, Nhan Phan, Anis Yazidi, Pål Halvorsen, and Michael A Riegler. Combining datasets to increase the number of samples and improve model fitting. arXiv preprint arXiv:2210.05165, 2022.

[5] François Perrin, Jacques Pernier, Olivier Bertrand, and Jean Francois Echallier. Spherical splines for scalp potential and current density mapping. Electroencephalography and clinical neurophysiology, 72(2):184–187, 1989.

[6] Pedro LC Rodrigues, Marco Congedo, and Christian Jutten. Dimensionality transcending: a method for merging BCI datasets with different dimensionalities. IEEE Transactions on Biomedical Engineering, 68(2):673–684, 2020.

[7] Paolo Zanini, Marco Congedo, Christian Jutten, Salem Said, and Yannick Berthoumieu. Transfer learning: A riemannian geometry framework with applications to brain–computer interfaces. IEEE Transactions on Biomedical
Engineering, 65(5):1107–1116, 2017.


