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Introduction

Many signal processing applications require first and second order
statistical moments of the sample set {x;}7_;. To be robust to
heavy-tailed distributions or outliers, [Mar76] proposed the M-estimators:

m= (Z n(t)) S a6 2 Hoa(p, )

i:nl i=1 (1)
Y= % > w(t)(xi — p)(xi — p)" £ He(p, T),

i=1

where t; 2 (x; — )X (x; — p), uy and u are functions that respect
Maronna’s conditions [Mar76].

Under certain conditions [Mar76],
iy = Hﬂ(ukv X)
Tit1 = He(Bpg1s k)

converge towards a unique solution satisfying (1).



Introduction

Figure 1: Example of a set of points generated with a heavy-tailed distribution
with real probability density function (p.d.f.) in orange. Estimated p.d.f. are in
red: Gaussian estimators on the left, our estimators on the right.
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Data model

Let n data points x; € CP distributed according to the model:
Xi ?u+ﬁ2%u; (3)

where pp € CP, 7 € (R})", X € SH} " and u; ~ CN(0,1,).
Hence, 7; > 0, X > 0 and det(X) = 1.

Thus, x; follows a Compound Gaussian distribution, i.e.

x;j ~ CN(p, 7,X). (4)
Definition
The set of parameters is M, , = CP? x (R})"” x SH}T.

Remark

The textures T; are assumed to be unknown and deterministic.



Data model - Log-likelihood

Hence, V0 = (u, T,X) € M, , the negative log-likelihood is

- (xi — )T (xi — p)
L(O) = log det (7, 5
(©) Z[g( )+ (5)
And the Maximum Likelihood Estimate satisfies
—1
< 1 = Xi
1 ¢~ (0 — p)(xi — ) (6)
Yy ==
n ’z:; Ti
1 _
=3 (xi — )" (xi — ).

Remark

(6) coincides with the fixed point (1) for ui(t) = ux(t) = p/t but does
not satisfy Maronna's conditions. The associated fixed-point iterations
(2) generally diverge in practice !
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Riemannian optimization

A tool of interest for contrained parameters

estimation is the Riemannian geometry. ToM

Briefly, a Riemannian manifold is a couple g M
(M, (-, -)M) where / ‘

e M is a smooth manifold (i.e. a locally

Euclidean set). Figure 2: A manifold M with
o (-, >é\’t is an inner product, on Ty M, its tangent space Ty M.
called the Riemannian metric.
The vector space Ty M is called the tangent space and is the
linearization of M at 6.
Remark
With the Riemmanian geometry of M defined, we can optimize a
function f : M — R.

For a full review on this topic: Optimization algorithms on matrix
manifolds [AMS08; Smi05].



Riemannian optimization

The goal is to minimize the negative log-likelihood:

0 = argmin L(0). (7)
0EMpn

where M, , = CP x (RF)" x SHf™.

Remark

M. is a product manifold of sets which have well known Riemannian
manifolds.

The tangent space of M, , at ¢ denoted Ty M, , is the product of the
tangent spaces of CP, (R})"” and SH ™ i.e,

ToMpn={6€CP xR x H,: Tr(Z '¢5) =0}, (8)

where #H,, is the Hermitian set.



Riemannian optimization

Definition
Let &, € TyM,p n, the Riemannian metric at ¢ is defined as,

M. P RI)" HT
<£a77>9 = <§,u77”>ﬁ + <£T7”7T>S— ) + <£Z7T]Z>Z ) (9)
with

o (£..m)5 = Re{€in,},

o <€T777-,->5-R:)n = (9710 &) (791 ©n,.), where ® and .©t

denote the elementwise product and power operators respectively,

HIT _ _
o ((x.m5)y’ =Tr (X' ;).

Remark

(Mp’,,, (- )M") is a Riemannian manifold and all its geometrical
elements (exponential mapping, parallel transport, and distance) are
derived from Riemannian geometries of CP, (R})", and S’H;*.



Riemannian optimization

Input : Initial iterate ; € M, ,.
Output: Sequence of iterates {0y}
k:=1;
& = —grad L(61);
while no convergence do
Compute a step size a (e.g see [AMS08, §4.2]) and set

O1 = R;\k/lp’"(akfk)?
Compute Bi+1 (e.g see [AMS08, §8.3]) and set
€1 1= —grad L(Oks1) + Brrs Ty 5. (€);
k:=k+1,;
end
Algorithm 1: Riemannian conjugate gradient [AMS08]

e grad L(fy) is the Riemannian gradient, computed in Proposition 1.

° Ré\k/t”‘" is a retraction provided in Section 3.1.

° Tﬁ:’;‘:ﬂ is a vector transport provided in Section 3.1.
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Numerical experiment

We compare the mean squared errors of different estimators on simulated
data according to model (3).

1. Gaussian estimators: sample mean u® and SCM denoted yC.

2. Two-step estimation: the sets {x;}7_, are centered with u® and
then we estimate ¥ using Tyler's M-estimator [Tyl87]. The
estimator is denoted ¥ ¥+,

3. Tyler's joint estimators of location and scatter matrix [Tyl87]
denoted ™ and . These estimators corresponds to (1) with
u1(t) = \/p/t and u(t) = p/t. It converges in practice unlike
fixed-point equations of the MLE.

4. Tyler's M-estimator with location known [Tyl87]. The sets {x;}7_,
are centered with g and then we estimate . The estimator is
denoted ¥ V¥

5. Our estimators ¢ and ¥“©: a Riemannian conjugate gradient to
minimize (5) on M, , performed with the library Pymanopt

[TKW16].
10



Numerical experiment
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Figure 3: Mean squared errors over 200 simulated sets {x;}7_; (p = 10) with
respect to the number n of samples for the considered estimators
pe {ps, pu", u) and § € {E6, TVH FTe §TY 56}

Remark

pCS and £, Riemannian Conjugate Gradient estimators, perform
better than other estimators. For n > 3p, ¥y perform as good as

T poretsh : Ty,
Tyler's estimator with p known, ¥ "'¥, [Tyl87] ! a5l



Conclusion

This paper has proposed an efficient Riemannian optimization-based
procedure to jointly estimate the location and scatter matrix of a
Compound Gaussian distribution. A Riemannian geometry of the
parameter manifold M, , has been described in order to derive a
Riemannian conjugate gradient optimizer. This algorithm reaches
performance close to the MLE of the "known location” case, which
illustrates the interest of the proposed approach.

12
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