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Introduction

Many signal processing applications require first and second order

statistical moments of the sample set {xi}ni=1. To be robust to

heavy-tailed distributions or outliers, [Mar76] proposed the M-estimators:
µ =

( n∑
i=1

u1(ti )
)−1 n∑

i=1

u1(ti )xi , Hµ(µ,Σ)

Σ =
1

n

n∑
i=1

u2(ti )(xi − µ)(xi − µ)H , HΣ(µ,Σ) ,

(1)

where ti , (xi − µ)HΣ−1(xi − µ), u1 and u2 are functions that respect

Maronna’s conditions [Mar76].

Under certain conditions [Mar76],{
µk+1 = Hµ(µk ,Σk)

Σk+1 = HΣ(µk+1,Σk)
(2)

converge towards a unique solution satisfying (1).
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Introduction

Figure 1: Example of a set of points generated with a heavy-tailed distribution

with real probability density function (p.d.f.) in orange. Estimated p.d.f. are in

red: Gaussian estimators on the left, our estimators on the right.
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Data model

Let n data points xi ∈ Cp distributed according to the model:

xi =
d
µ +
√
τiΣ

1
2 ui (3)

where µ ∈ Cp, τ ∈ (R+
∗ )n, Σ ∈ SH++

p and ui ∼ CN (0, I p).

Hence, τi > 0, Σ � 0 and det(Σ) = 1.

Thus, xi follows a Compound Gaussian distribution, i.e.

xi ∼ CN (µ, τiΣ). (4)

Definition

The set of parameters is Mp,n = Cp × (R+
∗ )n × SH++

p .

Remark

The textures τi are assumed to be unknown and deterministic.
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Data model - Log-likelihood

Hence, ∀θ = (µ, τ ,Σ) ∈Mp,n the negative log-likelihood is

L(θ) =
n∑

i=1

[
log det (τiΣ) +

(xi − µ)HΣ−1(xi − µ)

τi

]
. (5)

And the Maximum Likelihood Estimate satisfies

µ =

(
n∑

i=1

1

τi

)−1 n∑
i=1

xi

τi

Σ =
1

n

n∑
i=1

(xi − µ)(xi − µ)H

τi

τi =
1

p
(xi − µ)HΣ−1(xi − µ).

(6)

Remark

(6) coincides with the fixed point (1) for u1(t) = u2(t) = p/t but does

not satisfy Maronna’s conditions. The associated fixed-point iterations

(2) generally diverge in practice !
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Riemannian optimization

A tool of interest for contrained parameters

estimation is the Riemannian geometry.

Briefly, a Riemannian manifold is a couple

(M, 〈·, ·〉Mθ ) where

• M is a smooth manifold (i.e. a locally

Euclidean set).

• 〈·, ·〉Mθ is an inner product, on TθM,

called the Riemannian metric.

M

TθM

•
θ

Figure 2: A manifold M with

its tangent space TθM.

The vector space TθM is called the tangent space and is the

linearization of M at θ.

Remark

With the Riemmanian geometry of M defined, we can optimize a

function f :M→ R.

For a full review on this topic: Optimization algorithms on matrix

manifolds [AMS08; Smi05].
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Riemannian optimization

The goal is to minimize the negative log-likelihood:

θ̂ = arg min
θ∈Mp,n

L(θ). (7)

where Mp,n = Cp × (R+
∗ )n × SH++

p .

Remark

Mp,n is a product manifold of sets which have well known Riemannian

manifolds.

The tangent space of Mp,n at θ denoted TθMp,n is the product of the

tangent spaces of Cp, (R+
∗ )n and SH++

p i.e,

TθMp,n =
{
ξ ∈ Cp × Rn ×Hp : Tr(Σ−1ξΣ) = 0

}
, (8)

where Hp is the Hermitian set.
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Riemannian optimization

Definition

Let ξ, η ∈ TθMp,n, the Riemannian metric at θ is defined as,

〈ξ, η〉Mp,n

θ = 〈ξµ,ηµ〉C
p

µ + 〈ξτ ,ητ 〉
(R+

∗ )n

τ + 〈ξΣ,ηΣ〉
H++

p

Σ , (9)

with

• 〈ξµ,ηµ〉C
p

µ = Re{ξHµηµ},

• 〈ξτ ,ητ 〉
(R+

∗ )n

τ = (τ�−1 � ξτ )T (τ�−1 � ητ ), where � and .�t

denote the elementwise product and power operators respectively,

• 〈ξΣ,ηΣ〉
H++

p

Σ = Tr
(
Σ−1ξΣΣ−1ηΣ

)
.

Remark(
Mp,n, 〈·, ·〉

Mp,n
·

)
is a Riemannian manifold and all its geometrical

elements (exponential mapping, parallel transport, and distance) are

derived from Riemannian geometries of Cp, (R+
∗ )n, and SH++

p .
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Riemannian optimization

Input : Initial iterate θ1 ∈Mp,n.

Output: Sequence of iterates {θk}
k := 1;

ξ1 := − grad L(θ1);

while no convergence do
Compute a step size αk (e.g see [AMS08, §4.2]) and set

θk+1 := R
Mp,n

θk
(αkξk);

Compute βk+1 (e.g see [AMS08, §8.3]) and set

ξk+1 := − grad L(θk+1) + βk+1 T
Mp,n

θk ,θk+1
(ξk);

k := k + 1;
end

Algorithm 1: Riemannian conjugate gradient [AMS08]

• grad L(θk) is the Riemannian gradient, computed in Proposition 1.

• R
Mp,n

θk
is a retraction provided in Section 3.1.

• TMp,n

θk ,θk+1
is a vector transport provided in Section 3.1.
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Numerical experiment

We compare the mean squared errors of different estimators on simulated

data according to model (3).

1. Gaussian estimators: sample mean µG and SCM denoted ΣG.

2. Two-step estimation: the sets {xi}ni=1 are centered with µG and

then we estimate Σ using Tyler’s M-estimator [Tyl87]. The

estimator is denoted ΣTy,µG

.

3. Tyler’s joint estimators of location and scatter matrix [Tyl87]

denoted µTy and ΣTy. These estimators corresponds to (1) with

u1(t) =
√
p/t and u2(t) = p/t. It converges in practice unlike

fixed-point equations of the MLE.

4. Tyler’s M-estimator with location known [Tyl87]. The sets {xi}ni=1

are centered with µ and then we estimate Σ. The estimator is

denoted ΣTy,µ.

5. Our estimators µCG and ΣCG: a Riemannian conjugate gradient to

minimize (5) on Mp,n performed with the library Pymanopt

[TKW16].
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Numerical experiment
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Figure 3: Mean squared errors over 200 simulated sets {xi}ni=1 (p = 10) with

respect to the number n of samples for the considered estimators

µ̂ ∈ {µG,µTy,µCG} and Σ̂ ∈ {ΣG,ΣTy,µG

,ΣTy,µ,ΣTy,ΣCG}.

Remark

µCG and ΣCG, Riemannian Conjugate Gradient estimators, perform

better than other estimators. For n ≥ 3p, ΣCG perform as good as

Tyler’s estimator with µ known, ΣTy,µ, [Tyl87] ! 11



Conclusion

This paper has proposed an efficient Riemannian optimization-based

procedure to jointly estimate the location and scatter matrix of a

Compound Gaussian distribution. A Riemannian geometry of the

parameter manifold Mp,n has been described in order to derive a

Riemannian conjugate gradient optimizer. This algorithm reaches

performance close to the MLE of the “known location” case, which

illustrates the interest of the proposed approach.
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