A TYLER-TYPE ESTIMATOR OF LOCATION AND SCATTER LEVERAGING RIEMANNIAN OPTIMIZATION

A. Collas¹, F. Bouchard², A. Breloy³, C. Ren¹, G. Ginolhac⁴, J.-P. Ovarlez^{1,5} May 30, 2021

¹SONDRA, CentraleSupélec, Université Paris-Saclay
 ²CNRS, L2S, CentraleSupélec, Université Paris-Saclay
 ³LEME, Université Paris Nanterre
 ⁴LISTIC, Université Savoie Mont Blanc
 ⁵DEMR, ONERA, Université Paris-Saclay

- 1. Introduction
- 2. Data model
- 3. Riemannian optimization

4. Numerical experiment

Introduction

Introduction

Many signal processing applications require first and second order statistical moments of the sample set $\{x_i\}_{i=1}^n$. To be robust to heavy-tailed distributions or outliers, [Mar76] proposed the *M*-estimators:

$$\begin{cases} \boldsymbol{\mu} = \left(\sum_{i=1}^{n} u_1(t_i)\right)^{-1} \sum_{i=1}^{n} u_1(t_i) \boldsymbol{x}_i \triangleq \mathcal{H}_{\boldsymbol{\mu}}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\ \boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} u_2(t_i) (\boldsymbol{x}_i - \boldsymbol{\mu}) (\boldsymbol{x}_i - \boldsymbol{\mu})^H \triangleq \mathcal{H}_{\boldsymbol{\Sigma}}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \end{cases}$$
(1)

where $t_i \triangleq (\mathbf{x}_i - \boldsymbol{\mu})^H \Sigma^{-1} (\mathbf{x}_i - \boldsymbol{\mu})$, u_1 and u_2 are functions that respect Maronna's conditions [Mar76].

Under certain conditions [Mar76],

$$\begin{cases} \boldsymbol{\mu}_{k+1} = \mathcal{H}_{\boldsymbol{\mu}}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \\ \boldsymbol{\Sigma}_{k+1} = \mathcal{H}_{\boldsymbol{\Sigma}}(\boldsymbol{\mu}_{k+1}, \boldsymbol{\Sigma}_{k}) \end{cases}$$
(2)

converge towards a unique solution satisfying (1).

Introduction

Figure 1: Example of a set of points generated with a heavy-tailed distribution with real probability density function (p.d.f.) in orange. Estimated p.d.f. are in red: Gaussian estimators on the left, our estimators on the right.

Data model

Data model

Let *n* data points $x_i \in \mathbb{C}^p$ distributed according to the model:

$$\mathbf{x}_{i} = \mu + \sqrt{\tau_{i}} \Sigma^{\frac{1}{2}} \mathbf{u}_{i}$$
(3)

where $\mu \in \mathbb{C}^p$, $\tau \in (\mathbb{R}^+_*)^n$, $\Sigma \in S\mathcal{H}_p^{++}$ and $u_i \sim \mathbb{CN}(0, I_p)$. Hence, $\tau_i > 0$, $\Sigma \succ 0$ and det $(\Sigma) = 1$.

Thus, x_i follows a Compound Gaussian distribution, *i.e.*

$$\mathbf{x}_{i} \sim \mathbb{CN}(\boldsymbol{\mu}, \tau_{i} \boldsymbol{\Sigma}).$$
 (4)

Definition

The set of parameters is $\mathcal{M}_{p,n} = \mathbb{C}^p \times (\mathbb{R}^+_*)^n \times \mathcal{SH}_p^{++}$.

Remark

The textures τ_i are assumed to be unknown and deterministic.

Data model - Log-likelihood

Hence, $orall heta = (oldsymbol{\mu}, oldsymbol{ au}, \Sigma) \in \mathcal{M}_{
ho, n}$ the negative log-likelihood is

$$L(\theta) = \sum_{i=1}^{n} \left[\log \det \left(\tau_i \Sigma \right) + \frac{(\mathbf{x}_i - \mu)^H \Sigma^{-1} (\mathbf{x}_i - \mu)}{\tau_i} \right].$$
(5)

And the Maximum Likelihood Estimate satisfies

$$\begin{cases} \boldsymbol{\mu} = \left(\sum_{i=1}^{n} \frac{1}{\tau_i}\right)^{-1} \sum_{i=1}^{n} \frac{\boldsymbol{x}_i}{\tau_i} \\ \boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \frac{(\boldsymbol{x}_i - \boldsymbol{\mu})(\boldsymbol{x}_i - \boldsymbol{\mu})^H}{\tau_i} \\ \tau_i = \frac{1}{p} (\boldsymbol{x}_i - \boldsymbol{\mu})^H \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}). \end{cases}$$
(6)

Remark

(6) coincides with the fixed point (1) for $u_1(t) = u_2(t) = p/t$ but does not satisfy Maronna's conditions. The associated fixed-point iterations (2) generally diverge in practice !

A tool of interest for contrained parameters estimation is the Riemannian geometry. Briefly, a Riemannian manifold is a couple $(\mathcal{M}, \langle \cdot, \cdot \rangle_{\theta}^{\mathcal{M}})$ where

- *M* is a *smooth manifold* (*i.e.* a locally Euclidean set).
- $\langle \cdot, \cdot \rangle_{\theta}^{\mathcal{M}}$ is an inner product, on $T_{\theta}\mathcal{M}$, called the *Riemannian metric*.

Figure 2: A manifold \mathcal{M} with its tangent space $T_{\theta}\mathcal{M}$.

The vector space $T_{\theta}\mathcal{M}$ is called the tangent space and is the linearization of \mathcal{M} at θ .

Remark

With the Riemmanian geometry of \mathcal{M} defined, we can optimize a function $f : \mathcal{M} \to \mathbb{R}$.

For a full review on this topic: Optimization algorithms on matrix manifolds [AMS08; Smi05].

The goal is to minimize the negative log-likelihood:

$$\hat{\theta} = \underset{\theta \in \mathcal{M}_{p,n}}{\arg\min} L(\theta).$$
(7)

where $\mathcal{M}_{p,n} = \mathbb{C}^p \times (\mathbb{R}^+_*)^n \times \mathcal{SH}_p^{++}$.

Remark

 $\mathcal{M}_{p,n}$ is a product manifold of sets which have well known Riemannian manifolds.

The tangent space of $\mathcal{M}_{p,n}$ at θ denoted $\mathcal{T}_{\theta}\mathcal{M}_{p,n}$ is the product of the tangent spaces of \mathbb{C}^p , $(\mathbb{R}^+_*)^n$ and \mathcal{SH}_p^{++} i.e,

$$T_{\theta}\mathcal{M}_{\rho,n} = \left\{ \xi \in \mathbb{C}^{\rho} \times \mathbb{R}^{n} \times \mathcal{H}_{\rho} : \operatorname{Tr}(\Sigma^{-1} \boldsymbol{\xi}_{\Sigma}) = 0 \right\},$$
(8)

where \mathcal{H}_{p} is the Hermitian set.

Definition

Let $\xi, \eta \in T_{\theta}\mathcal{M}_{p,n}$, the Riemannian metric at θ is defined as,

$$\langle \langle \xi, \eta \rangle_{\theta}^{\mathcal{M}_{\rho,n}} = \langle \boldsymbol{\xi}_{\mu}, \boldsymbol{\eta}_{\mu} \rangle_{\mu}^{\mathbb{C}^{\rho}} + \langle \boldsymbol{\xi}_{\tau}, \boldsymbol{\eta}_{\tau} \rangle_{\tau}^{(\mathbb{R}^{+})^{n}} + \langle \boldsymbol{\xi}_{\Sigma}, \boldsymbol{\eta}_{\Sigma} \rangle_{\Sigma}^{\mathcal{H}^{+}_{\rho}},$$
(9)

with

•
$$\langle \boldsymbol{\xi}_{\mu}, \eta_{\mu} \rangle_{\mu}^{\mathbb{C}^{p}} = \mathfrak{Re}\{\boldsymbol{\xi}_{\mu}^{H}\eta_{\mu}\},$$

• $\langle \boldsymbol{\xi}_{\tau}, \eta_{\tau} \rangle_{\tau}^{(\mathbb{R}^{+})^{n}} = (\tau^{\odot - 1} \odot \boldsymbol{\xi}_{\tau})^{T} (\tau^{\odot - 1} \odot \eta_{\tau}),$ where \odot and $.^{\odot t}$
denote the elementwise product and power operators respectively,
• $\langle \boldsymbol{\xi}_{\Sigma}, \eta_{\Sigma} \rangle_{\Sigma}^{\mathcal{H}^{++}_{\mu}} = \operatorname{Tr} (\Sigma^{-1} \boldsymbol{\xi}_{\Sigma} \Sigma^{-1} \eta_{\Sigma}).$

Remark

 $\left(\mathcal{M}_{p,n}, \langle \cdot, \cdot \rangle^{\mathcal{M}_{p,n}}\right)$ is a Riemannian manifold and all its geometrical elements (exponential mapping, parallel transport, and distance) are derived from Riemannian geometries of \mathbb{C}^p , $(\mathbb{R}^+_*)^n$, and \mathcal{SH}_p^{++} .

end

Algorithm 1: Riemannian conjugate gradient [AMS08]

- grad $L(\theta_k)$ is the Riemannian gradient, computed in Proposition 1.
- $R_{\theta_k}^{\mathcal{M}_{p,n}}$ is a retraction provided in Section 3.1.
- $\mathcal{T}_{\theta_k,\theta_{k+1}}^{\mathcal{M}_{p,n}}$ is a vector transport provided in Section 3.1.

Numerical experiment

We compare the mean squared errors of different estimators on simulated data according to model (3).

- 1. Gaussian estimators: sample mean μ^{G} and SCM denoted Σ^{G} .
- 2. Two-step estimation: the sets $\{x_i\}_{i=1}^n$ are centered with μ^{G} and then we estimate Σ using Tyler's *M*-estimator [Tyl87]. The estimator is denoted $\Sigma^{\text{Ty},\mu^{G}}$.
- 3. Tyler's joint estimators of location and scatter matrix [Tyl87] denoted μ^{Ty} and Σ^{Ty} . These estimators corresponds to (1) with $u_1(t) = \sqrt{p/t}$ and $u_2(t) = p/t$. It converges in practice unlike fixed-point equations of the MLE.
- 4. Tyler's *M*-estimator with location known [Tyl87]. The sets $\{x_i\}_{i=1}^n$ are centered with μ and then we estimate Σ . The estimator is denoted $\Sigma^{\text{Ty},\mu}$.
- Our estimators μ^{CG} and Σ^{CG}: a Riemannian conjugate gradient to minimize (5) on M_{p,n} performed with the library Pymanopt [TKW16].

Numerical experiment

Figure 3: Mean squared errors over 200 simulated sets $\{x_i\}_{i=1}^n (p = 10)$ with respect to the number *n* of samples for the considered estimators $\hat{\mu} \in \{\mu^G, \mu^{Ty}, \mu^{CG}\}$ and $\hat{\Sigma} \in \{\Sigma^G, \Sigma^{Ty, \mu^G}, \Sigma^{Ty, \mu}, \Sigma^{Ty}, \Sigma^{CG}\}$.

Remark

 μ^{CG} and Σ^{CG} , Riemannian Conjugate Gradient estimators, perform better than other estimators. For $n\geq 3p,\,\Sigma^{\text{CG}}$ perform as good as Tyler's estimator with μ known, $\Sigma^{\text{Ty},\mu}$, [Ty/87] !

This paper has proposed an efficient Riemannian optimization-based procedure to jointly estimate the location and scatter matrix of a Compound Gaussian distribution. A Riemannian geometry of the parameter manifold $\mathcal{M}_{p,n}$ has been described in order to derive a Riemannian conjugate gradient optimizer. This algorithm reaches performance close to the MLE of the "known location" case, which illustrates the interest of the proposed approach.

References

P.-A. Absil, R. Mahony, and R. Sepulchre. *Optimization Algorithms on Matrix Manifolds*. Princeton, NJ, USA:
Princeton University Press, 2008. ISBN: 0691132984, 9780691132983.

R. A. Maronna. "Robust M-Estimators of Multivariate Location and Scatter". In: *Ann. Statist.* 4.1 (Jan. 1976), pp. 51–67. DOI: 10.1214/aos/1176343347. URL: https://doi.org/10.1214/aos/1176343347.

References ii

- S. Smith. "Covariance, Subspace, and Intrinsic Cramér-Rao Bounds". In: *Signal Processing, IEEE Transactions on* 53 (June 2005), pp. 1610–1630. DOI: 10.1109/TSP.2005.845428.
- J. Townsend, N. Koep, and S. Weichwald. "Pymanopt: A Python Toolbox for Optimization on Manifolds Using Automatic Differentiation". In: *J. Mach. Learn. Res.* 17.1 (Jan. 2016), pp. 4755–4759. ISSN: 1532-4435.

D. E. Tyler. "A Distribution-Free M-Estimator of Multivariate Scatter". In: Ann. Statist. 15.1 (Mar. 1987), pp. 234–251. DOI: 10.1214/aos/1176350263. URL: https://doi.org/10.1214/aos/1176350263.