# ON THE USE OF GEODESIC TRIANGLES BETWEEN GAUSSIAN DISTRIBUTIONS FOR CLASSIFICATION PROBLEMS

## Time series for remote sensing and classification

In recent years, many image time series have been taken from the **earth** with different technologies: SAR, multi/hyper spectral imaging, ...

Objectives: segment semantically these data using spatial information, temporal information and **sensor diversity** (spectral bands, polarization...).



Figure 1. Multivariate image time series.

Applications: disaster assessment, activity monitoring, land cover mapping, crop type mapping, ...

## **Classification pipeline**



Figure 2. Classification pipeline.

Examples of  $\theta$ :  $\theta = \Sigma$  a covariance matrix,  $\theta = (\mu, \Sigma)$  a vector and a covariance matrix,

### **Existing work and Riemannian geometry**

 $m{x}_1,\cdots,m{x}_n\in\mathbb{R}^p$  realizations of  $m{x}\sim\mathcal{N}(m{0},m{\Sigma}),\,m{\Sigma}\in\mathcal{S}_p^{++}$  (set of p imes p symmetric definite matrices).

**Step 2**: maximum likelihood estimator:

$$\hat{\boldsymbol{\Sigma}} = rac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i \boldsymbol{x}_i^T.$$

**Step 3**: Riemannian manifold of centered Gaussian distributions:  $\mathcal{S}_p^{++}$  with the Fisher information metric:  $orall m{\xi}_{m{\Sigma}}, m{\eta}_{m{\Sigma}}$  in the tangent space at  $m{\Sigma}$ 

$$\langle \boldsymbol{\xi}_{\boldsymbol{\Sigma}}, \boldsymbol{\eta}_{\boldsymbol{\Sigma}} 
angle_{\boldsymbol{\Sigma}}^{\mathsf{FIM}} = \mathrm{Tr} \left( \boldsymbol{\Sigma}^{-1} \boldsymbol{\xi}_{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\eta}_{\boldsymbol{\Sigma}} 
ight).$$

Riemannian distance

$$d_{\mathcal{S}_{p}^{++}}(\boldsymbol{\Sigma}_{l},\boldsymbol{\Sigma}_{m}) = \left\| \log \left( \boldsymbol{\Sigma}_{l}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{m} \boldsymbol{\Sigma}_{l}^{-\frac{1}{2}} \right) \right\|_{2}$$

• Riemannian center of mass of a set  $\{\Sigma_i\}$ 

$$\Sigma_{\mathsf{mean}} = \operatorname*{arg\,min}_{\mathbf{\Sigma}\in\mathcal{S}_p^{++}} \sum_i d^2_{\mathcal{S}_p^{++}}(\mathbf{\Sigma},\mathbf{\Sigma}_i).$$

For a full description of the manifold  $S_p^{++}$  and its associated center of mass: see [1, 2].

A. Collas<sup>1</sup>, F. Bouchard<sup>2</sup>, G. Ginolhac<sup>3</sup>, A. Breloy<sup>4</sup>, C. Ren<sup>1</sup>, J.-P. Ovarlez<sup>1,5</sup>

<sup>1</sup>SONDRA, CentraleSupélec, Université Paris-Saclay <sup>2</sup>CNRS, L2S, CentraleSupélec, Université Paris-Saclay <sup>3</sup>LISTIC, Université Savoie Mont Blanc <sup>4</sup>LEME, Université Paris Nanterre <sup>5</sup>DEMR, ONERA, Université Paris-Saclay

# The Riemannian manifold of non-centered Gaussian distributions

 $\mathbb{R}^p imes \mathcal{S}_p^{++}$  with the Fisher information metric:  $\forall \xi = \left( \boldsymbol{\xi}_{\mu}, \boldsymbol{\xi} \right)$ space

$$\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle_{(\boldsymbol{\mu}, \boldsymbol{\Sigma})}^{\mathsf{FIM}} = \boldsymbol{\xi}_{\boldsymbol{\mu}}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\eta}_{\boldsymbol{\mu}} + \frac{1}{2} \operatorname{Tr} \left( \boldsymbol{\Sigma}^{-1} \boldsymbol{\xi}_{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\eta}_{\boldsymbol{\Sigma}} \right).$$

Problem: this Riemannian geometry is not fully known... (see [3, 4])



Figure 3. The geodesic between two non-centered Gaussian distributions is unknown in general.

## Geodesic triangles for classification problems



Figure 4. A geodesic triangle.

Divergence  $\delta$ : arc length of the path between  $(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$  and  $(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$ .

 $\delta_c: \quad (\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \to (\boldsymbol{\mu}_1, c\boldsymbol{\Sigma}_1) \to (\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2),$  $\delta_{\perp}: (\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \to (\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1 + \Delta \boldsymbol{\mu} \Delta \boldsymbol{\mu}^T) \to (\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2),$ 

## **Center of mass and Riemannian optimization**

|            | Riemannian center of mass $(oldsymbol{\mu}_{mean}, oldsymbol{\Sigma}_{mean})$ of a set $\{(oldsymbol{\mu}_i, oldsymbol{\Sigma}_i)\}$                                                                                                                                                                               |     |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
|            | $(\boldsymbol{\mu}_{\text{mean}}, \boldsymbol{\Sigma}_{\text{mean}}) = \argmin_{(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \in \mathbb{R}^p \times \mathcal{S}_p^{++}} \sum_i \delta^2 \left( \left( \boldsymbol{\mu}, \boldsymbol{\Sigma} \right), \left( \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i \right) \right)$ | (6) |  |  |  |
| c positive | Algorithm to minimize a real-valued function $f$ defined on $\mathbb{R}^p 	imes \mathcal{S}_p^{++}$ :                                                                                                                                                                                                              |     |  |  |  |
| (1)        | Input : Initial iterate $(\mu_1, \Sigma_1)$ .<br>Output: Sequence of iterates $\{(\mu_k, \Sigma_k)\}$ .<br>k := 1;                                                                                                                                                                                                 |     |  |  |  |
|            | while no convergence do<br>Compute a step size $\alpha$ and set $(\boldsymbol{\mu}_{k+1}, \boldsymbol{\Sigma}_{k+1}) := R_{(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}(-\alpha \operatorname{grad} f(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k));$<br>k := k + 1;                                                 |     |  |  |  |
| (2)        | end<br>Algorithm 1: Riemannian gradient descent                                                                                                                                                                                                                                                                    |     |  |  |  |
| (3)        | <ul> <li>grad f(μ<sub>k</sub>, Σ<sub>k</sub>) is the Riemannian gradient of f at (μ<sub>k</sub>, Σ<sub>k</sub>) computed in Proposition 1,</li> <li>R<sub>(μ<sub>k</sub>,Σ<sub>k</sub>)</sub> is a second order retraction at (μ<sub>k</sub>, Σ<sub>k</sub>) derived in Proposition 2.</li> </ul>                  |     |  |  |  |
| (4)        | For a detailed introduction to optimization on Riemannian manifolds: see [5].                                                                                                                                                                                                                                      |     |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                    |     |  |  |  |

$$oldsymbol{\xi}_{oldsymbol{\Sigma}}ig),\eta=\left(oldsymbol{\eta}_{oldsymbol{\mu}},oldsymbol{\eta}_{oldsymbol{\Sigma}}ig)$$
 in the tangent

(5)

$$\mathcal{N}(\boldsymbol{\mu}_2,\boldsymbol{\Sigma}_2)$$

$$\mathcal{N}(\boldsymbol{\mu}_2,\boldsymbol{\Sigma}_2)$$

 $\forall c > 0$  $\Delta oldsymbol{\mu} = oldsymbol{\mu}_2 - oldsymbol{\mu}_1$ 

$$(\mathbf{x}_{k})(-\alpha \operatorname{grad} f(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}));$$

Breizhcrops dataset [6]:

- satellite,
- meadows and temporary meadows,
- 13 spectral bands.



| Estimator                                                        | Geometry                 | Overall accuracy (%) | Average accuracy (%) |
|------------------------------------------------------------------|--------------------------|----------------------|----------------------|
| $oldsymbol{X}_j$                                                 | $\mathbb{R}^{p 	imes n}$ | 10.1                 | 18.5                 |
| Mean $\hat{oldsymbol{\mu}}_j$                                    | $\mathbb{R}^p$           | 13.2                 | 14.8                 |
| Covariance matrix $\hat{\mathbf{\Sigma}}_j$                      | $\mathcal{S}_p^{++}$     | 43.9                 | 28.1                 |
| Centered covariance matrix $\hat{\mathbf{\Sigma}}_j$             | $\mathcal{S}_p^{++}$     | 46.7                 | 30.1                 |
| Proposed - $(\hat{oldsymbol{\mu}}_j, \hat{oldsymbol{\Sigma}}_j)$ | $\delta_c$               | 54.3                 | 37.0                 |
| Proposed - $(\hat{\mu}_j, \hat{\Sigma}_j)$                       | $\delta_{\perp}$         | 53.3                 | 35.7                 |

Table 1. Accuracies of Nearest centroïd classifiers on the Breizhcrops dataset.

estimators/geometries are considered:

- $X_j$ : raw time-series with the Euclidean distance  $d(X_l, X_m) = ||X_l X_m||_F$  and the arithmetic mean  $\boldsymbol{X}_{\text{mean}} = \frac{1}{M} \sum_{j=1}^{M} \boldsymbol{X}_{j},$
- $\hat{\mu}_j = \frac{1}{n} \sum_{i=1}^n [X_j]_{:,i}$ : temporal mean with the Euclidean distance  $d(\hat{\hat{\mu}}_l, \hat{\hat{\mu}}_m) = \|\hat{\mu}_l - \hat{\mu}_m\|_2$  and the arithmetic mean  $\hat{\mu}_{mean} = \frac{1}{M} \sum_{j=1}^M \hat{\mu}_j$ ,
- associated Riemannian mean (4),
- the distance (3) and its associated Riemannian mean (4),
- its associated Riemannian center of mass (6),
- its associated Riemannian center of mass (6).

## Application

• more than 600 000 crop time series across the whole Brittany taken by the Sentinel-2

• 9 classes: barley, wheat, rapeseed, corn, sunflower, orchards, nuts, permanent

Figure 5. Reflectances of a Sentinel-2 time series from the Breizhcrops dataset.

We denote the columns of a time-series by  $X_j = [[X_j]_{:,1}, \cdots, [X_j]_{:,n}] \in \mathbb{R}^{p \times n}$ . Different

•  $\hat{\Sigma}_j = \frac{1}{n} \sum_{i=1}^n [X_j]_{:,i} [X_j]_{:,i}^T$ : temporal covariance matrix with the distance (3) and its

•  $\hat{\Sigma}_j = \frac{1}{n} \sum_{i=1}^n \left( [X_j]_{:,i} - \hat{\mu}_j \right) \left( [X_j]_{:,i} - \hat{\mu}_j \right)^T$ : temporal centered covariance matrix with

•  $(\hat{\mu}_i, \hat{\Sigma}_j)$ : temporal mean and centered covariance matrix with the divergence  $\delta_c$  and

•  $(\hat{\mu}_j, \hat{\Sigma}_j)$ : temporal mean and centered covariance matrix with the divergence  $\delta_\perp$  and

#### References

[1] L. T. Skovgaard, "A Riemannian geometry of the multivariate Normal model," Scandinavian Journal of Statistics, vol. 11, no. 4,

- [2] M. Moakher, "A differential geometric approach to the geometric mean of symmetric positive-definite matrices," SIAM Journal on
- [3] M. Calvo and J. M. Oller, "An explicit solution of information geodesic equations for the multivariate normal model," Statistics & Risk
- [4] M. Tang, Y. Rong, J. Zhou, and X. Li, "Information geometric approach to multisensor estimation fusion," IEEE Transactions on Signal

[6] M. Rußwurm, C. Pelletier, M. Zollner, S. Lefèvre, and M. Körner, "Breizhcrops: A time series dataset for crop type mapping," International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ISPRS (2020), 2020.

pp. 211-223, 1984.

Matrix Analysis and Applications, vol. 26, no. 3, pp. 735–747, 2005.

Modeling, vol. 9, no. 1-2, pp. 119–138, 1991.

Processing, vol. 67, no. 2, pp. 279–292, 2019.

<sup>[5]</sup> P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds. 2008.