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Time series for remote sensing and classification

In recent years, many image time series have been taken from the earth with different

technologies: SAR, multi/hyper spectral imaging, ...

Objectives: segment semantically these data using spatial information, temporal infor-

mation and sensor diversity (spectral bands, polarization...).

Figure 1. Multivariate image time series.

Applications: disaster assessment, activity monitoring, land cover mapping, crop type

mapping, ...

Classification pipeline

Figure 2. Classification pipeline.

Examples of θ: θ = Σ a covariance matrix, θ = (µ, Σ) a vector and a covariance matrix, ...

Existing work and Riemannian geometry

x1, · · · , xn ∈ Rp realizations of x ∼ N (0, Σ), Σ ∈ S++
p (set of p × p symmetric positive

definite matrices).

Step 2: maximum likelihood estimator:

Σ̂ = 1
n

n∑
i=1

xix
T
i . (1)

Step 3: Riemannian manifold of centered Gaussian distributions:

S++
p with the Fisher information metric: ∀ξΣ, ηΣ in the tangent space at Σ

〈ξΣ, ηΣ〉FIMΣ = Tr
(
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)
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Riemannian distance
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Riemannian center of mass of a set {Σi}
Σmean = arg min

Σ∈S++
p

∑
i

d2
S++

p
(Σ, Σi). (4)

For a full description of the manifold S++
p and its associated center of mass: see [1, 2].

The Riemannian manifold of non-centered Gaussian distributions

Rp ×S++
p with the Fisher information metric: ∀ξ =

(
ξµ, ξΣ

)
, η =

(
ηµ, ηΣ

)
in the tangent

space

〈ξ, η〉FIM(µ,Σ) = ξT
µΣ−1ηµ + 1

2
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)
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Problem: this Riemannian geometry is not fully known... (see [3, 4])

Figure 3. The geodesic between two non-centered Gaussian distributions is unknown in general.

Geodesic triangles for classification problems

Figure 4. A geodesic triangle.

Divergence δ: arc length of the path between (µ1, Σ1) and (µ2, Σ2).
δc : (µ1, Σ1) → (µ1, cΣ1) → (µ2, Σ2), ∀c > 0
δ⊥ : (µ1, Σ1) → (µ1, Σ1 + ∆µ∆µT ) → (µ2, Σ2), ∆µ = µ2 − µ1

Center of mass and Riemannian optimization

Riemannian center of mass (µmean, Σmean) of a set {(µi, Σi)}
(µmean, Σmean) = arg min

(µ,Σ)∈Rp×S++
p

∑
i

δ2 ((µ, Σ) , (µi, Σi)) (6)

Algorithm to minimize a real-valued function f defined on Rp × S++
p :

Input : Initial iterate (µ1, Σ1).
Output: Sequence of iterates {(µk, Σk)}.
k := 1;
while no convergence do

Compute a step size α and set (µk+1, Σk+1) := R(µk,Σk)(−α grad f (µk, Σk));
k := k + 1;

end

Algorithm 1: Riemannian gradient descent

grad f (µk, Σk) is the Riemannian gradient of f at (µk, Σk) computed in Proposition 1,
R(µk,Σk) is a second order retraction at (µk, Σk) derived in Proposition 2.

For a detailed introduction to optimization on Riemannian manifolds: see [5].

Application

Breizhcrops dataset [6]:

more than 600 000 crop time series across the whole Brittany taken by the Sentinel-2
satellite,

9 classes: barley, wheat, rapeseed, corn, sunflower, orchards, nuts, permanent
meadows and temporary meadows,

13 spectral bands.

Figure 5. Reflectances of a Sentinel-2 time series from the Breizhcrops dataset.

Estimator Geometry Overall accuracy (%) Average accuracy (%)

Xj Rp×n 10.1 18.5

Mean µ̂j Rp 13.2 14.8

Covariance matrix Σ̂j S++
p 43.9 28.1

Centered covariance matrix Σ̂j S++
p 46.7 30.1

Proposed - (µ̂j, Σ̂j) δc 54.3 37.0

Proposed - (µ̂j, Σ̂j) δ⊥ 53.3 35.7

Table 1. Accuracies of Nearest centroïd classifiers on the Breizhcrops dataset.

We denote the columns of a time-series by Xj = [[Xj]:,1, · · · , [Xj]:,n] ∈ Rp×n. Different

estimators/geometries are considered:

Xj: raw time-series with the Euclidean distance d(X l, Xm) = ‖X l − Xm‖F and the

arithmetic mean Xmean = 1
M

∑M
j=1 Xj,

µ̂j = 1
n

∑n
i=1[Xj]:,i: temporal mean with the Euclidean distance

d(µ̂l, µ̂m) = ‖µ̂l − µ̂m‖2 and the arithmetic mean µ̂mean = 1
M

∑M
j=1 µ̂j,

Σ̂j = 1
n

∑n
i=1[Xj]:,i[Xj]T:,i: temporal covariance matrix with the distance (3) and its

associated Riemannian mean (4),

Σ̂j = 1
n

∑n
i=1

(
[Xj]:,i − µ̂j

) (
[Xj]:,i − µ̂j

)T
: temporal centered covariance matrix with

the distance (3) and its associated Riemannian mean (4),

(µ̂j, Σ̂j): temporal mean and centered covariance matrix with the divergence δc and

its associated Riemannian center of mass (6),

(µ̂j, Σ̂j): temporal mean and centered covariance matrix with the divergence δ⊥ and

its associated Riemannian center of mass (6).
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