Adapting learning models to distribution shifts with affine alignment

Antoine Collas - POPILSS 2025 Inria Saclay - Mind team

19/06/2025

CentraleSupélec

2019 - 2022:

2022 - Present: Postdoc at Inria Saclay, Mind team

About me

- PhD at CentraleSupélec, Sondra lab
- Statistical estimation and learning on Riemannian manifolds
- Supervisors: Jean-Philippe Ovarlez and Guillaume Ginolhac

- Domain adaptation and generative models for neuroscience applications Supervisors: Bertrand Thirion, Alexandre Gramfort, and Rémi Flamary

Introduction to Domain Adaptation (DA) 1.

2. Skada-Bench: Benchmarking Unsupervised DA methods

3. Joint shifts in (X, y) on manifolds: GOPSA

4. Temporal normalization: PSDNorm layer

1. Introduction to Domain Adaptation (DA)

Independent and identically distributed data: $x_n \in \mathcal{X}$, e.g. \mathbb{R}^d and $y_n \in \mathcal{Y}$, e.g. $\{-1,1\}$ for binary classification Goal: find a predictor $f: \mathcal{X} \mapsto \mathcal{Y}$ by empirical risk minimization

with ℓ a loss function

sed learning

- $\{(x_n, y_n)\}_{n=1}^N \sim \mathbb{P}(X, Y)$

 $\min_{f \in \mathscr{F}} \left\{ \hat{R}(f) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, f(x_n)) \right\}$

Domain Adaptation (DA) Problem

Source domain (S) and Target domain (T) with

Source domain (\mathcal{S}): MNIST

2

$\mathbb{P}_{\mathcal{S}}(X,Y) \neq \mathbb{P}_{\mathcal{T}}(X,Y)$

Target domain (\mathcal{T}): SVHN

2

8

Domain Adaptation (DA) Problem

Source domain (S) and Target domain (T) with

Training on the source domain (classical empirical risk minimization):

- $\mathbb{P}_{\mathcal{S}}(X,Y) \neq \mathbb{P}_{\mathcal{T}}(X,Y)$

Simple shifts can lead to very bad classifications on the target domain!

Unsupervised DA Problem

- Source domain is labeled: $\{(x_n, y_n)\}_{n=1}^{N^{\mathcal{S}}} \sim \mathbb{P}_{\mathcal{S}}(X, Y)$ Target domain is unlabeled: $\{(x_n, \cdot)\}_{n=1}^{N^{\mathcal{T}}} \sim \mathbb{P}_{\mathcal{T}}(X, Y)$
- Assumptions on the shift between $\mathbb{P}_{\mathcal{S}}(X, Y)$ and $\mathbb{P}_{\mathcal{T}}(X, Y)$:

Problem setting:

Mapping computation:

9

Mapping application:

Classifier fitting:

Mapping:

$$f_{\text{DA}} = f \circ m$$

where *m* aligns source and target domains

m can be a normalization, subspace projection, optimal transport mapping, ...

End-to-End Deep Learning:

Adversarial or discrepancy losses to align source and target distributions

DA methods

Scikit-Adaptation: Skada

- Python library for domain adaptation:
- Sklearn-like API with estimators (.fit, .predict, . . .), pipeline, grid search
- Shallow and Deep learning methods
- DA scorers to validate hyper-parameters without using target labels

https://github.com/scikit-adaptation/skada

2. SKADA-Bench: Benchmarking Unsupervised DA methods

*Equal contribution

https://arxiv.org/abs/2407.11676

Yanis Lalou^{*}, Théo Gnassounou^{*}, AC^{*}, Antoine de Mathelin^{*}, Oleksii Kachaiev, Ambroise Odonnat, Alexandre Gramfort, Thomas Moreau, Rémi Flamary

Evaluate DA methods across diverse modalities:

- •8 real-wold datasets of 4 modalities
- •4 synthetic datasets
- 51 adaptation pairs (source \rightarrow target)
- •20 DA Methods
- 5-fold nested cross-validation
- built with Skada

https://github.com/scikit-adaptation/skada-bench

Motivation and setup

Modality	Preprocessing
CV	Decaff + PCA
CV	ResNet + PCA
CV	Vect + PCA
NLP	LLM + PCA
NLP	LLM + PCA
Tabular	One Hot Encod
Tabular	None
Biosignals	Cov + TS
	ModalityCVCVCVNLPNLPTabularTabularBiosignals

Validation: $\left(X_{val}^{\mathscr{S}}, y_{val}^{\mathscr{S}}, X_{val}^{\mathscr{T}}\right)$ (2)

Validation: $\left(X_{\text{val}}^{\mathscr{S}}, y_{\text{val}}^{\mathscr{S}}, X_{\text{val}}^{\mathscr{T}}\right)$ (2)

Assumption: a good adapter can adapt source \rightarrow target and then target \rightarrow source

DA scorer: circular validation

Evaluation: $\left(X_{\text{test}}^{\mathcal{T}}, y_{\text{test}}^{\mathcal{T}}\right)$ 3

Realistic setup: no target labels for training, labels used only for benchmarking

Synthetic

				ji))	stift .	with at stome a USPS Groups they out in							N60	od Scorer	
		CON	Lat.	Cond	; 511);	office	office	MAL	2012er	AILON	Mush	Phish	BCI	Selectic	Rank
	Train Src	0.88	0.85	0.66	0.19	0.65	0.56	0.54	0.59	0.7	0.72	0.91	0.55		10.66
	Train Tgt	0.92	0.93	0.82	0.98	0.89	0.8	0.96	1.0	0.73	1.0	0.97	0.64		1.55
	Dens. RW	0.88	0.86	0.66	0.18	0.62	0.56	0.54	0.58	0.7	0.71	0.91	0.55	IW	12.20
വള	Disc. RW	0.85	0.83	0.71	0.18	0.63	0.54	0.5	0.6	0.68	0.75	0.91	0.56	CircV	8.75
ntin	Gauss. RW	0.89	0.86	0.65	0.21	0.22	0.44	0.11	0.54	0.55	0.51	0.46	0.25	CircV	16.45
eigl	KLIEP	0.88	0.86	0.66	0.19	0.65	0.56	0.54	0.6	0.69	0.72	0.91	0.55	CircV	10.56
Rewe	KMM	0.89	0.85	0.64	0.16	0.64	0.54	0.52	0.7	0.57	0.74	0.91	0.52	CircV	11.74
	NN RW	0.89	0.86	0.67	0.15	0.65	0.55	0.54	0.59	0.66	0.71	0.91	0.54	CircV	9.15
	MMDTarS	0.88	0.86	0.64	0.2	0.6	0.56	0.54	0.59	0.7	0.74	0.91	0.55	IW	10.81
	CORAL	0.74	0.7	0.76	0.18	0.65	0.57	0.62	0.73	0.7	0.72	0.92	0.62	CircV	5.08
പ	MapOT	0.72	0.57	0.82	0.02	0.6	0.51	0.61	0.76	0.68	0.63	0.84	0.47	PE	10.21
pir	EntOT	0.71	0.6	0.82	0.12	0.64	0.58	0.6	0.83	0.62	0.75	0.86	0.54	CircV	9.40
lap	ClassRegOT	0.74	0.58	0.81	0.11	NA	0.53	0.62	0.97	0.68	0.82	0.89	0.52	IW	8.25
Σ	LinOT	0.73	0.73	0.76	0.18	0.66	0.57	0.64	0.82	0.7	0.76	0.91	0.61	CircV	4.06
	MMD-LS	0.78	0.72	0.76	0.56	0.65	0.56	0.55	0.97	0.63	0.85	NA	0.5	MixVal	8.22
e	JPCA	0.88	0.85	0.66	0.15	0.62	0.48	0.51	0.77	0.69	0.78	0.9	0.54	PE	8.98
pac	SA	0.74	0.68	0.8	0.11	0.65	0.57	0.56	0.88	0.67	0.78	0.89	0.53	CircV	7.80
Subsj	TCA	0.52	0.47	0.51	0.62	0.04	0.02	0.07	0.61	0.61	0.49	0.48	0.26	DEV	17.58
	TSL	0.88	0.85	0.66	0.2	0.63	0.48	0.45	0.63	0.69	0.45	0.89	0.26	IW	15.09
ы	JDOT	0.72	0.58	0.82	0.13	0.6	0.42	0.59	0.79	0.67	0.65	0.79	0.47	IW	11.42
$_{\mathrm{the}}$	OTLabelProp	0.72	0.59	0.8	0.07	0.66	0.56	0.62	0.86	0.67	0.64	0.86	0.5	CircV	10.01
ō	DASVM	0.89	0.86	0.65	0.15	NA	NA	NA	0.87	NA	0.83	0.85	NA	MixVal	7.29

Adaptation = gain = loss

Real

Synthetic

	-			ji))	shift a	ill, .	the at anne all spectron perior one are						N°0	od Scorer	
		CON	Jai.	ond Could	; 5110:	office	office	MAL	207et	Allal	Mush	Phish	BCI	Selecte	Rank
	Train Src	0.88	0.85	0.66	0.19	0.65	0.56	0.54	0.59	0.7	0.72	0.91	0.55		10.66
	Train Tgt	0.92	0.93	0.82	0.98	0.89	0.8	0.96	1.0	0.73	1.0	0.97	0.64		1.55
	Dens. RW	0.88	0.86	0.66	0.18	0.62	0.56	0.54	0.58	0.7	0.71	0.91	0.55	IW	12.20
1g	Disc. RW	0.85	0.83	0.71	0.18	0.63	0.54	0.5	0.6	0.68	0.75	0.91	0.56	CircV	8.75
htin	Gauss. RW	0.89	0.86	0.65	0.21	0.22	0.44	0.11	0.54	0.55	0.51	0.46	0.25	CircV	16.45
eigl	KLIEP	0.88	0.86	0.66	0.19	0.65	0.56	0.54	0.6	0.69	0.72	0.91	0.55	CircV	10.56
ew	KMM	0.89	0.85	0.64	0.16	0.64	0.54	0.52	0.7	0.57	0.74	0.91	0.52	CircV	11.74
\mathbf{R}	NN RW	0.89	0.86	0.67	0.15	0.65	0.55	0.54	0.59	0.66	0.71	0.91	0.54	CircV	9.15
	MMDTarS	0.88	0.86	0.64	0.2	0.6	0.56	0.54	0.59	0.7	0.74	0.91	0.55	IW	10.81
	CORAL	0.74	0.7	0.76	0.18	0.65	0.57	0.62	0.73	0.7	0.72	0.92	0.62	CircV	5.08
16	MapOT	0.72	0.57	0.82	0.02	0.6	0.51	0.61	0.76	0.68	0.63	0.84	0.47	PE	10.21
pir	EntOT	0.71	0.6	0.82	0.12	0.64	0.58	0.6	0.83	0.62	0.75	0.86	0.54	CircV	9.40
Iap	ClassRegOT	0.74	0.58	0.81	0.11	NA	0.53	0.62	0.97	0.68	0.82	0.89	0.52	IW	8.25
2	LinOT	0.73	0.73	0.76	0.18	0.66	0.57	0.64	0.82	0.7	0.76	0.91	0.61	CircV	4.06
	MMD-LS	0.78	0.72	0.76	0.56	0.65	0.56	0.55	0.97	0.63	0.85	NA	0.5	MixVal	8.22
ce	JPCA	0.88	0.85	0.66	0.15	0.62	0.48	0.51	0.77	0.69	0.78	0.9	0.54	PE	8.98
spa.	\mathbf{SA}	0.74	0.68	0.8	0.11	0.65	0.57	0.56	0.88	0.67	0.78	0.89	0.53	CircV	7.80
adu	TCA	0.52	0.47	0.51	0.62	0.04	0.02	0.07	0.61	0.61	0.49	0.48	0.26	DEV	17.58
$\mathbf{\tilde{S}}$	TSL	0.88	0.85	0.66	0.2	0.63	0.48	0.45	0.63	0.69	0.45	0.89	0.26	IW	15.09
Other	JDOT	0.72	0.58	0.82	0.13	0.6	0.42	0.59	0.79	0.67	0.65	0.79	0.47	IW	11.42
	OTLabelProp	0.72	0.59	0.8	0.07	0.66	0.56	0.62	0.86	0.67	0.64	0.86	0.5	CircV	10.01
	DASVM	0.89	0.86	0.65	0.15	NA	NA	NA	0.87	NA	0.83	0.85	NA	MixVal	7.29

Adaptation = gain = loss

Real

Affine Distribution Alignment Across Domains

- CORAL (Correlation Alignment) [Sun et al., 2017]
- Aligns second-order moments between source and target:

$$m(x) = \Sigma_{\mathcal{T}}^{\frac{1}{2}} \Sigma_{\mathcal{S}}^{-\frac{1}{2}} x,$$

LinOT (Linear Optimal Transport) [Flamary et al., 2019] Affine map minimizing transport cost between $\mathbb{P}_{S} = \mathcal{N}(\mu_{S}, \Sigma_{S})$ and $\mathbb{P}_{\mathcal{T}} = \mathcal{N}(\mu_{\mathcal{T}}, \Sigma_{\mathcal{T}})$:

$$m(x) = Ax + b$$
 with $A = \Sigma_{a}$

 $\arg\min_{A} \|A\Sigma_{\mathcal{S}}A^{\mathsf{T}} - \Sigma_{\mathcal{T}}\|_{F}^{2}$

 $\Sigma_{\mathcal{S}}^{-\frac{1}{2}} \left(\Sigma_{\mathcal{S}}^{\frac{1}{2}} \Sigma_{\mathcal{T}} \Sigma_{\mathcal{S}}^{\frac{1}{2}} \right)^{\frac{1}{2}} \Sigma_{\mathcal{S}}^{-\frac{1}{2}}, \quad b = \mu_{\mathcal{T}} - A\mu_{\mathcal{S}}$

Affine Distribution Alignment Across Domains

Many benefits:

- easy to code
- fast
- no need to access source and target data simultaneously
- no/few hyperparameters
- unsupervised: no target labels required

Affine Distribution Alignment Across Domains

How to deal with ...?

- ...target shifts, i.e. joint shifts (X, y)?
- ...several source domains, i.e. multi-source adaptation?
- ... $\mathcal{X} = \mathcal{M}$, i.e. data on manifolds?
- ...time-series, e.g. $\mathscr{X} = \mathbb{R}^d$ with *d* large?
- ...feature maps in neural network, i.e. end-to-end normalization?

3. Joint shifts in (X, y) **on manifolds:**

- Apolline Mellot*, AC*, Sylvain Chevallier, Alexandre Gramfort, Denis A. Engemann
 - *Equal contribution
 - NeurIPS 2024, Spotlight
 - https://arxiv.org/abs/2407.03878

Machine learning on EEG data

Predicting an outcome from neural activity measured by EEG, a non-invasive technique that records brain signals from the scalp.

Applications:

sleep staging (awake, deep sleep, ...), brain-computer interface, biomarker regression, ...

Brain age: subject-level regression

1 time series = 1 subject

Brain age is a proxy for cognitive health and detects deviations from typical aging

Let $x_{\ell} \in \mathbb{R}^d$ be a stationary zero-mean time series

 $R(\tau) = \mathbb{E} \left[x_{\ell+1} \right]$

 $C(s) = \operatorname{Re}\left\{\sum_{\tau=-\infty}^{\infty} e^{-i2\pi s\tau} R(\tau)\right\} \in \mathbb{S}_{d}^{++}$

Co-spectrum

$$\left\{ \begin{array}{c} \mathbf{x}_{\ell}^{\mathsf{T}} \\ \mathbf{x}_{\ell} \end{array} \right\} \in \mathbb{R}^{d \times d}$$

$[C(s_0), \ldots, C(s_{F-1})]$ represents the time-series and belongs to the manifold $(\mathbb{S}_{d}^{++})^F$

Parallel transport moves Σ from $\bar{\Sigma}$ to I_d at $\alpha \in [0,1]$: PT(Σ, $\bar{\Sigma}, \alpha) = \bar{\Sigma}^{-\alpha/2} \Sigma \bar{\Sigma}^{-\alpha/2}$

[Sabbagh, et al., 2019]

(2) Riemannian logarithm of Σ at I_d

[Sabbagh, et al., 2019]

(3) Upper-triangular vectorization

$\phi(\Sigma, \overline{\Sigma}) \triangleq \operatorname{uvec}(\log(\overline{\Sigma}^{-1/2}\Sigma\overline{\Sigma}^{-1/2})) \in \mathbb{R}^{d(d+1)/2}$

 $\hat{y} = \beta^{\mathsf{T}} \phi(\Sigma, \bar{\Sigma})$

[Sabbagh, et al., 2019]

Data shifts in neuroscience

Sources of variability:

- population: age, gender, diseased or healthy, ...
- hardware and preprocessing: sensors, positions, sampling rates, ...
- task-related variability: tasks during recording, level of engagement, external stimuli, ...

Data shifts in neuroscience

Mean y per domain **Ridge Regression** GREEN (neural network) Riemannian whitening
Setup:

K source domains:
$$\{(\Sigma_{k,n}, y_{k,n})\}_{n=1}^{N_k}$$
 for $k \in \{1, ..., K\}$ and $N_{\mathcal{S}} = \sum_{k=1}^K N_k$
One target domain: $\{\Sigma_{\mathcal{T},n}\}_{n=1}^{N_{\mathcal{T}}}, \bar{y}_{\mathcal{T}}$ (mean value)

Setup:

K source domains: $\{(\Sigma_{k,n}, y_{k,n})\}_{n=1}^{N_k}$ for One target domain: $\{\Sigma_{\mathcal{T},n}\}_{n=1}^{N_{\mathcal{T}}}, \bar{y}_{\mathcal{T}}$ (mean value)

Learn the parallel transport $\alpha \in [0,1]$ per domain: $\phi(\Sigma, \overline{\Sigma}, \alpha) \triangleq \operatorname{uvec} \left(\log_{I_d} \left(\operatorname{PT}(\Sigma, \Omega) \right) \right)$

$$k \in \{1, ..., K\} \text{ and } N_{\mathcal{S}} = \sum_{k=1}^{K} N_k$$

$$\bar{\Sigma}, \alpha)$$
) = uvec $\left(\log\left(\bar{\Sigma}^{-\alpha/2}\Sigma\bar{\Sigma}^{-\alpha/2}\right)\right)$

Learnable source and target data matrices w.r.t. $\alpha_{\mathcal{S}} \in [0,1]^K$ and $\alpha_{\mathcal{T}}$: $.., \phi(\Sigma_{K,N_K}, \bar{\Sigma}_K, \alpha_K) \Big]^\top \in \mathbb{R}^{N_{\mathcal{S}} \times d(d+1)/2}$

$$Z_{\mathcal{S}}(\alpha_{\mathcal{S}}) \triangleq \left[\phi(\Sigma_{1,1}, \bar{\Sigma}_{1}, \alpha_{1}), \dots \right]$$
$$Z_{\mathcal{T}}(\alpha_{\mathcal{T}}) \triangleq \left[\phi(\Sigma_{\mathcal{T},1}, \bar{\Sigma}_{\mathcal{T}}, \alpha_{\mathcal{T}}), \dots \right]$$

 $\dots, \phi(\Sigma_{\mathcal{T},1}, \bar{\Sigma}_{\mathcal{T}}, \alpha_{\mathcal{T}})]^{\top} \in \mathbb{R}^{N_{\mathcal{T}} \times d(d+1)/2}$

Learnable source and target data matrices w.r.t. $\alpha_{\mathcal{S}} \in [0,1]^K$ and $\alpha_{\mathcal{T}}$: $\dots, \phi(\Sigma_{K,N_K}, \bar{\Sigma}_K, \alpha_K) \Big]^\top \in \mathbb{R}^{N_{\mathcal{S}} \times d(d+1)/2}$ $\dots, \phi(\Sigma_{\mathcal{T},1}, \bar{\Sigma}_{\mathcal{T}}, \alpha_{\mathcal{T}})]^{\top} \in \mathbb{R}^{N_{\mathcal{T}} \times d(d+1)/2}$

$$Z_{\mathcal{S}}(\alpha_{\mathcal{S}}) \triangleq \left[\phi(\Sigma_{1,1}, \bar{\Sigma}_{1}, \alpha_{1}), \dots \right]$$
$$Z_{\mathcal{T}}(\alpha_{\mathcal{T}}) \triangleq \left[\phi(\Sigma_{\mathcal{T},1}, \bar{\Sigma}_{\mathcal{T}}, \alpha_{\mathcal{T}}), \dots \right]$$

Learnable source and target data matrices w.r.t. $\alpha_{\mathcal{S}} \in [0,1]^K$ and $\alpha_{\mathcal{T}}$: $.., \phi(\Sigma_{K,N_K}, \bar{\Sigma}_K, \alpha_K) \Big]^\top \in \mathbb{R}^{N_{\mathcal{S}} \times d(d+1)/2}$ $\dots, \phi(\Sigma_{\mathcal{T},1}, \bar{\Sigma}_{\mathcal{T}}, \alpha_{\mathcal{T}})]^{\top} \in \mathbb{R}^{N_{\mathcal{T}} \times d(d+1)/2}$

$$\begin{split} & Z_{\mathcal{S}}(\alpha_{\mathcal{S}}) \triangleq \left[\phi(\Sigma_{1,1}, \bar{\Sigma}_{1}, \alpha_{1}), \, \dots \right. \\ & Z_{\mathcal{T}}(\alpha_{\mathcal{T}}) \triangleq \left[\phi(\Sigma_{\mathcal{T},1}, \bar{\Sigma}_{\mathcal{T}}, \alpha_{\mathcal{T}}), \, \dots \right. \end{split}$$

Train-time:

$$\alpha_{\mathcal{S}}^* \triangleq \arg \min_{\alpha \in [0,1]^K} \left\| y_{\mathcal{S}} - Z_{\mathcal{S}}(\alpha) \beta_{\mathcal{S}}^*(\alpha) \right\|_2^2$$

subject to $\beta_{\mathcal{S}}^*(\alpha)$ is the ridge estimator

$$\left(\bar{y}_{\mathcal{T}} - \operatorname{mean}\left(Z_{\mathcal{T}}(\alpha)\beta_{\mathcal{S}}^{*}(\alpha_{\mathcal{S}}^{*})\right)\right)^{2}$$

$$s^*(\alpha_{\mathcal{S}}^*)$$

HarMNqEEG dataset [Li et al., 2022]

14 recording sites, 1500 human participants, random combination of source sites, single random target site

Mean y per domain Ridge Regression GREEN (neural network) Riemannian whitening Ridge reg. domain interc. GOPSA (proposed)

4. Temporal Normalization: PSDNorm layer

Théo Gnassounou, AC, Rémi Flamary, Alexandre Gramfort

https://arxiv.org/abs/2503.04582

Sleep staging: epoch-level classification

1 time series = 1 night = 8 hours

1 prediction every epoch (30s.)

Multi-source sleep staging

Classification setup: (e.g. 1 domain = 1 hospital)

Multi-source sleep staging

Classification setup: (e.g. 1 domain = 1 hospital)

Encoder block: transforms a feature map into a new one

Normalization layers: BatchNorm, InstanceNorm, LayerNorm...

Neural network achitecture

Normalizes a feature map $G \in \mathbb{R}^{c \times \ell}$ to have zero mean and unit variance

$$\widetilde{G}_{m,l} \triangleq \frac{G_{m,l} - \widehat{\mu}_m}{\sqrt{\widehat{\sigma}_m^2 + \varepsilon}}$$

$$\widehat{\mu}_{m} \triangleq \frac{1}{\ell} \sum_{l=1}^{\ell} G_{m,l}$$

$$\widehat{\sigma}_{m}^{2} \triangleq \frac{1}{\ell} \sum_{l=1}^{\ell} \left(G_{m,l} - \widehat{\mu}_{m} \right)^{2}$$

InstanceNorm

Mean across time

Variance across time

[Ulyanov et al., 2016]

PSDNorm: Power Spectral Density Normalization *N* : batch size, *c* : channel number, *f* : filter size (hyperparameter)

Shape reduced l Batch estimation Parameters NcNormalizing with Temporal Convolution $\widehat{\mathbf{P}} =$ $\widehat{\mathbf{H}}$ cNUpdate $*^{\ell}$ $\widehat{\overline{\mathbf{p}}}$

c

PSDNorm: Power Spectral Density Normalization N: batch size, c: channel number, f: filter size (hyperparameter)

Shape reduced Batch estimation Parameters cΝ Normalizing with Temporal Convolution $\widehat{\mathbf{P}} =$ $\widehat{\mathbf{H}}$ cUpdate $*^{\ell}$ $\widehat{\mathbf{p}}$

c

Remarks:

- normalization of the temporal autocorrelation

f = 1 and $\hat{P} = 1 \implies$ InstanceNorm

- the bigger f the stronger the normalization
- structured LinOT for multi-source DA

Train time: $\mathcal{B} = \{G^{(1)}, \dots, G^{(N)}\} \subset \mathbb{R}^{c \times \ell}$

 $\hat{P}^{(j)} = \text{Welch} \left(G^{(j)} - \hat{\mu}^{(j)} \mathbf{1}_c^{\mathsf{T}} \right)$ **PSD** estimation

Batch barycentre

$$\hat{\bar{P}}_{\mathscr{B}} = \left(\frac{1}{N}\sum_{n=1}^{N} (\hat{P}^{(j)})^{\odot \frac{1}{2}}\right)^{n}$$

Running mean

$$\hat{\bar{P}} \leftarrow \left((1 - \alpha) \hat{\bar{P}}^{\odot \frac{1}{2}} + \alpha \hat{\bar{P}}^{\odot}_{\mathscr{B}} \right)$$

Filter computation

$$\hat{H}^{(j)} = \frac{1}{\sqrt{f}} \left(\hat{\bar{P}} \oslash \hat{P}^{(j)}\right)^{\odot \frac{1}{2}}$$

f-Monge mapping $\tilde{G}^{(j)} = \left(G^{(j)} - \hat{\mu}^{(j)} \mathbf{1}_{\ell}^{\mathsf{T}}\right) * \hat{H}^{(j)}$

Algorithms

 $\odot 2$

 $\left(\frac{1}{2}\right)^{\odot 2}$

 F_{f}^{*}

39

Train time: $\mathscr{B} = \{ G^{(1)}, \dots, G^{(N)} \} \subset \mathbb{R}^{c \times \ell}$

 $\hat{P}^{(j)} = \text{Welch} \left(G^{(j)} - \hat{\mu}^{(j)} \mathbf{1}_c^{\mathsf{T}} \right)$ **PSD** estimation

Batch barycentre

$$\hat{\bar{P}}_{\mathscr{B}} = \left(\frac{1}{N}\sum_{n=1}^{N} (\hat{P}^{(j)})^{\odot \frac{1}{2}}\right)^{n}$$

Running mean

$$\hat{\bar{P}} \leftarrow \left((1 - \alpha) \hat{\bar{P}}^{\odot \frac{1}{2}} + \alpha \hat{\bar{P}}^{\odot}_{\mathscr{B}} \right)$$

Filter computation

$$\hat{H}^{(j)} = \frac{1}{\sqrt{f}} \left(\hat{\bar{P}} \oslash \hat{P}^{(j)}\right)^{\odot \frac{1}{2}}$$

f-Monge mapping $\tilde{G}^{(j)} = \left(G^{(j)} - \hat{\mu}^{(j)} \mathbf{1}_{\ell}^{\mathsf{T}} \right) * \hat{H}^{(j)}$

Setup:

- 10 datasets (11K subjects, >100K hours, >10M labels, 360 gb)
- leave-one-dataset-out
- averaged on 3 random seeds

Setup:

- 10 datasets (11K subjects, >100K hours, >10M labels, 360 gb)
- leave-one-dataset-out
- averaged on 3 random seeds

Balanced Accuracy Score 0.76 0.74 0.76 0.74 -

Evaluation

Subject-wise balanced accuracy on MASS and CHAT datasets for different normalization layers in USleep trained on 2500 subjects

Benchmarks matter

 \rightarrow Skada-Bench provides the first cross-modal, realistically-validated UDA benchmark Back to basics: affine alignments as a unifying thread \rightarrow simple moment-matching methods help reduce cross-domain error without labels Joint shifts in (*X*, *y*) on manifolds

that outperform more complex alternatives

Deep time-frequency normalization

corpora

Conclusions

 \rightarrow EEG data live on manifolds, yet we can design simple and efficient methods—such as GOPSA—

 \rightarrow PSDNorm aligns spectral representations to improve cross-dataset sleep staging across 10

References

[Lalou, et al. 2024] Lalou, Y., Gnassounou, T., Collas, A., de Mathelin, A., Kachaiev, O., Odonnat, A., Gramfort, A., Moreau, T. and Flamary, R., 2024. SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation. arXiv preprint arXiv:2407.11676.

[Mellot, et al. 2024] Mellot, A., Collas, A., Chevallier, S., Gramfort, A. and Engemann, D., 2024, December. Geodesic optimization for predictive shift adaptation on EEG data. In NeurIPS 2024-38th Conference on Neural Information Processing Systems.

[Sun et al., 2017] Sun, B., Feng, J. and Saenko, K., 2017. Correlation alignment for unsupervised domain adaptation. Domain adaptation in computer vision applications, pp.153-171.

[Flamary et al., 2019] Flamary, R., Lounici, K. and Ferrari, A., 2019. Concentration bounds for linear monge mapping estimation and optimal transport domain adaptation. arXiv preprint arXiv:1905.10155.

[Sabbagh et al., 2019] Sabbagh, D., Ablin, P., Varoquaux, G., Gramfort, A. and Engemann, D.A., 2019. Manifoldregression to predict from MEG/EEG brain signals without source modeling. Advances in Neural Information Processing Systems, 32.

References

[Li et al., 2022] Li, M., Wang, Y., Lopez-Naranjo, C., Hu, S., Reyes, R.C.G., Paz-Linares, D., Areces-Gonzalez, A., Abd Hamid, A.I., Evans, A.C., Savostyanov, A.N. and Calzada-Reyes, A., 2022. Harmonized-multinational qEEG norms (HarMNqEEG). NeuroImage, 256, p.119190.

[Ulyanov et al., 2016] Ulyanov, D., Vedaldi, A. and Lempitsky, V., 2016. Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022.

[Paillard et al., 2025] Paillard, J., Hipp, J.F. and Engemann, D.A., 2025. GREEN: A lightweight architecture using learnable wavelets and Riemannian geometry for biomarker exploration with EEG signals. Patterns.

2. SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation

Yanis Lalou*, Théo Gnassounou*, Antoine Collas*, Antoine de Mathelin*, Oleksii Kachaiev, Ambroise Odonnat, Alexandre Gramfort, Thomas Moreau, Rémi Flamary

*Equal contribution

https://arxiv.org/abs/2407.11676

Dataset	Modality	Preprocessing	Pairs of Adaptation	Classes	Samples	Features
Office 31	CV	Decaff + PCA	6	31	470 ± 350	100
Office Home	CV	ResNet + PCA	12	65	3897 ± 850	100
MNIST/USPS	CV	Vect + PCA	2	10	3000 / 10000	50
20 Newsgroup	NLP	LLM + PCA	6	2	3728 ± 174	50
Amazon Review	NLP	LLM + PCA	12	4	2000	50
Mushrooms	Tabular	One Hot Encoding	2	2	4062 ± 546	117
Phishing	Tabular	None	2	2	5527 ± 1734	30
BCI	Biosignals	Cov + TS	9	4	288	253

Datasets

3. Normalization for joint shifts in (X, y): GOPSA

Apolline Mellot*, Antoine Collas*, Sylvain Chevallier, Alexandre Gramfort, Denis A. Engemann

*Equal contribution

NeurIPS 2024, Spotlight

https://arxiv.org/abs/2407.03878

Setup:

K source domains: $\{(\Sigma_{k,n}, y_{k,n})\}_{n=1}^{N_k}$ for One target domain: $\{\Sigma_{\mathcal{T},n}\}_{n=1}^{N_{\mathcal{T}}}$, $\bar{y}_{\mathcal{T}}$ (mean value)

Learn the parallel transport $\alpha \in [0,1]$ per domain: $\phi(\Sigma, \overline{\Sigma}, \alpha) \triangleq \operatorname{uvec} \left(\log_{I_d} \left(\operatorname{PT}(\Sigma, \Omega) \right) \right)$

$$k \in \{1, ..., K\} \text{ and } N_{\mathcal{S}} = \sum_{k=1}^{K} N_k$$

$$\left(\bar{\Sigma}, \alpha\right)\right) = \operatorname{uvec}\left(\log\left(\bar{\Sigma}^{-\alpha/2}\Sigma\bar{\Sigma}^{-\alpha/2}\right)\right)$$

$$= Z_{c}(\alpha)^{\top} (\lambda I_{N} + Z_{c}(\alpha)Z_{c}(\alpha)^{\top})^{\top}$$

$$\min_{\alpha \in [0,1]} \left(\bar{y}_{\mathcal{T}} - \frac{1}{N_{\mathcal{T}}} \mathbf{1}_{N_{\mathcal{T}}}^{\mathsf{T}} Z_{\mathcal{T}}(\alpha) \beta_{\mathcal{S}}^{*}(\alpha_{\mathcal{S}}^{*}) \right)^{2}$$

Assumption: $\bar{\Sigma}_{\mathcal{T}}, \bar{y}_{\mathcal{T}}$ are known (Optimization) $\alpha_{\mathcal{T}}^* \triangleq \arg$ (Prediction) $\hat{y}_{\mathcal{T}} \triangleq Z_{\mathcal{T}}(\alpha_{\mathcal{T}}^*) \beta_{\mathcal{S}}^*(\alpha_{\mathcal{S}}^*)$

$$= Z_{c}(\alpha)^{\top} (\lambda I_{N} + Z_{c}(\alpha)Z_{c}(\alpha)^{\top})^{\top}$$

$$\min_{\alpha \in [0,1]} \left(\bar{y}_{\mathcal{T}} - \frac{1}{N_{\mathcal{T}}} \mathbf{1}_{N_{\mathcal{T}}}^{\mathsf{T}} Z_{\mathcal{T}}(\alpha) \beta_{\mathcal{S}}^{*}(\alpha_{\mathcal{S}}^{*}) \right)^{2}$$

https://arxiv.org/abs/2503.04582

4. PSDNorm: Test-Time Temporal Normalization for Deep Learning in Sleep Staging

> Théo Gnassounou, Antoine Collas, Rémi Flamary, Alexandre Gramfort

Data shifts in sleep staging

Example with 3 classification datasets: MASS, Physionet, SHHS

- Intra-dataset (cross-val.): good performance
- Inter-dataset: performance drops

Goal: improve generalization performance with DA

Balanced accuracies

U-Sleep architecture

Encoder

Decoder

Normalizes a feature map $G \in \mathbb{R}^{c \times \ell}$ to have zero mean and unit variance

Train time: batch of feature maps: $\{G^{(1)}, ..., G^{(N)}\} \subset \mathbb{R}^{c \times \ell}$

$$\widehat{\mu}_{m} \triangleq \frac{1}{N\ell} \sum_{n=1}^{N} \sum_{l=1}^{\ell} G_{m,l}^{(n)}$$

$$\widehat{\sigma}_m^2 \triangleq \frac{1}{N\ell} \sum_{n=1}^N \sum_{l=1}^{\ell} \left(G_{m,l}^{(n)} - \frac{1}{N\ell} \right) = 0$$

Mean across batch and time

 $-\hat{\mu}_{m}\Big)^{2}$ Variance across batch and time

Train time: batch of feature maps: $\{G^{(1)}, ..., G^{(N)}\} \subset \mathbb{R}^{c \times \ell}$

$$\widetilde{G}_{m,l}^{(j)} = \gamma_m \frac{G_{m,l}^{(j)} - \widehat{\mu}_m}{\sqrt{\widehat{\sigma}_m^2 + \varepsilon_m^2}}$$

where $\gamma, \beta \in \mathbb{R}^c$ are learnable parameters

$\frac{\delta^m}{\epsilon} + \beta_m$ Normalization + affine transform

Test time: single feature map: $G \in \mathbb{R}^{c \times \ell}$

$$\widetilde{G}_{m,l} = \gamma_m \frac{G_{m,l} - \widehat{\mu}_m}{\sqrt{\widehat{\sigma}_m^2 + \varepsilon}} + \beta_m$$
Normalization + affine transform

where $\hat{\mu}$ and $\hat{\sigma}$ are the running mean and variance estimated during training.

Before normalization:

Frequency

PSDNorm: Power Spectral Density Normalization

After normalization:

Frequency

