Robust Clustering for Satellite Images Time-Series

Antoine Collas - 3ème année - SONDRA - ED STIC Paris-Saclay

17 janvier 2022

Supervisors: Jean-Philippe Ovarlez - Directeur de thèse - ONERA/SONDRA Guillaume Ginolhac - Directeur de thèse - LISTIC Chengfang Ren - Co-encadrant - SONDRA Arnaud Breloy - Co-encadrant - LEME

Context

Context of the PhD

In the last few years many images have been taken from the earth with different technologies (SAR, multi-spectral/hyperspectral imaging, ...).

Problematics

The objective is to extract **semantic information** in these new data. More particularly we focus on 2 specific topics:

- semantic segmentation (spatial information),
- time-series clustering/classification (temporal information).

Figure 1: Raw image.

Figure 2: Segmented image, one color = one class (grass, woods, ...).

Example of multi-spectral time series

Figure 3: Example of reflectances ρ of a Sentinel-2 time series of **meadows** from *Breizhcrops* dataset.

Figure 4: Example of reflectances ρ of a Sentinel-2 time series of **corn** from *Breizhcrops* dataset.

Figure 5: Clustering/classification pipeline on an image.

Examples of θ :

 $\theta = \Sigma$ a covariance matrix, $\theta = (\mu, \Sigma)$ a vector and a covariance matrix, $\theta = (\tau_i, U)$ a scalar and an orthogonal matrix...

Clustering/classification pipeline and Riemannian geometry

Clustering/classification and Riemannian geometry

The statistical model depends on $\theta \in \mathcal{M}$, a *Riemannian manifold*:

- step 2: maximization of the likelihood L over \mathcal{M} ,
- step 3: computing distances and centers of mass on $\mathcal{M}.$

Existing work

Let $x_1, \dots, x_n \in \mathbb{C}^p$ be data points distributed as $\mathbf{x} \sim \mathbb{CN}(0, \Sigma)$. Step 2: maximum likelihood estimator:

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^H.$$
(1)

Step 3: Riemannian distance on \mathcal{H}_p^{++} (geodesic distance):

$$d(\Sigma_1, \Sigma_2) = \left\| \log \left(\Sigma_1^{-\frac{1}{2}} \Sigma_2 \Sigma_1^{-\frac{1}{2}} \right) \right\|_2.$$

$$(2)$$

Riemannian geometry and objectives

What is a Riemannian manifold ?

Curvature induced by:

- constraints, e.g. the sphere: $\|\mathbf{x}\| = 1$,
- the Riemannian metric, e.g. on \mathcal{H}_p^{++} : $\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle_{\Sigma}^{\mathcal{M}} = \mathsf{Tr}(\Sigma^{-1}\boldsymbol{\xi}\Sigma^{-1}\boldsymbol{\eta}).$

Figure 6: A Riemannian manifold.

Examples of Riemannian manifolds \mathcal{M} :

- linear space (no constraints): $\mathbb{C}^{p \times p}$
- orthogonality constraints: $St_{p,k} = \{ \boldsymbol{U} \in \mathbb{C}^{p \times k} : \boldsymbol{U}^{H} \boldsymbol{U} = \boldsymbol{I}_{k} \}$
- positivity constraints: $\mathcal{H}_{p}^{++} = \{\Sigma \in \mathcal{H}_{p} : \forall x \neq 0 \in \mathbb{C}^{p}, \ x^{H}\Sigma x > 0\}$
- rank constraints: $\mathcal{H}_{p,k}^+ = \{\Sigma \in \mathcal{H}_p : \mathsf{rank}(\Sigma) = k\}$
- norm constraints: $S^{p^2-1} = \{ \boldsymbol{X} \in \mathbb{C}^{p \times p} : \| \boldsymbol{X} \|_F = 1 \}$

• ...

Step 2: objectives for parameter estimation

Figure 7: Example of a SAR image (from nasa.gov).

Figure 8: Example of a hyperspectral image (from nasa.gov).

Objectives:

- Develop **robust estimators**, *i.e.* estimators that work well with non Gaussian data because of the high resolution of images.
- Develop **regularized estimators**, *i.e.* estimators that handle high dimension of hyperspectral images.

Step 3: objectives for parameter clustering/classification

 \mathcal{M}

Figure 9: Distance: length of the geodesic γ .

Figure 10: Center of mass: $\theta = \arg \min_{\theta \in \mathcal{M}} \sum_{i} d_{\gamma}^{2}(\theta, \theta_{i}).$

Objectives:

Develop distances

- that respect the geometry of \mathcal{M} (e.g. orthogonality constraints),
- and that are related to the chosen statistical distributions.

Study of a "low rank" model

Let $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{C}^p$ be data points.

Assumption

The signal belongs to a k < p dimensional subspace denoted span(**U**).

Model

$$\underbrace{\mathbf{x}_{i}}_{\in\mathbb{C}^{p}} | \tau_{i} \stackrel{d}{=} \underbrace{\sqrt{\tau_{i}} \mathbf{U} \mathbf{g}_{i}}_{\text{signal} \in \text{span}(\mathbf{U})} + \underbrace{\mathbf{n}_{i}}_{\text{noise} \in \mathbb{C}^{p}}$$
(3)

where $\boldsymbol{g}_i \sim \mathbb{CN}(0, \boldsymbol{I}_k)$ and $\boldsymbol{n}_i \sim \mathbb{CN}(0, \boldsymbol{I}_p)$ are independent; $\boldsymbol{\tau} \in (\mathbb{R}^+_*)^n$ contains the unknown deterministic textures τ_i ; and $\boldsymbol{U} \in \mathbb{C}^{p \times k}$ is an orthogonal basis of the subspace.

MLE and intrinsic Cramèr-Rao bound [4]

Maximum likelihood estimation (MLE)

Maximization of the likelihood while respecting the constraints:

- U: orthogonal basis of the subspace (and thus invariant by rotation !)
- $au \in (\mathbb{R}^+_*)^n$ (positivity constraint)

$$\max_{\boldsymbol{J},\boldsymbol{\tau}\in\mathcal{M}}L(\boldsymbol{U},\boldsymbol{\tau}) \tag{4}$$

We proposed a Riemannian stochastic gradient descent for this problem.

Bounds

Study of the performance through intrinsic Cramer-Rao bounds:

$$\underbrace{\mathbb{E}[d_{\mathsf{Gr}_{p,k}}^2(\mathsf{span}(\hat{\boldsymbol{U}}),\mathsf{span}(\boldsymbol{U}))]}_{\mathbb{E}[d_{\mathsf{Gr}_{p,k}}^2} \approx \frac{(p-k)k}{nc_{\tau}} \approx \frac{(p-k)k}{n \times \mathsf{SNR}}$$
(5)

$$\underbrace{\mathbb{E}[d^2_{(\mathbb{R}^+_{\tau})^n}(\hat{\tau},\tau)]}_{\mathbf{r}} \geq \frac{1}{k} \sum_{i=1}^n \frac{(1+\tau_i)^2}{\tau_i^2} \tag{6}$$

texture estimation error

Figure 11: Scatter plot of samples $\{x_i\}_{i=1}^{1000}$ with real and estimated subspaces respectively in orange and red in the case $\mathbb{E}[\tau_i] = 10$.

Remark

Both subspaces are really close !

K-means++ on a Riemannian manifold [4]

Figure 12: Distance.

Figure 13: Center of mass (U, τ) .

Figure 14:

Euclidean *K*-means++: OA = 31.2%.

Figure 16: Ground truth.

Figure 15:

Proposed *K-means++*: OA = 47.2%

A Tyler-type estimator

A Tyler-type estimator using manifold optimization [1]

Problem

Let $\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n \in \mathbb{C}^p$ distributed as

$$\mathbf{x}_i \sim \mathbb{CN}(\boldsymbol{\mu}, \tau_i \boldsymbol{\Sigma})$$
 (7)

with $\mu \in \mathbb{C}^p$, $\tau \in (\mathbb{R}^+_*)^n$ and $\Sigma \in \mathcal{H}^{++}_p(\Sigma \succ 0)$.

- $\mu = 0$: Tyler's estimator converges to the maximum likelihood estimator.
- μ unknown: no estimator realizing the maximum likelihood estimator exists ...

Solution: maximizing the likelihood on a Riemannian manifold

$$\max_{\mu \in \mathbb{C}^{p}, \Sigma \succ 0, \tau_{i} > 0} L(\mu, \Sigma, \tau)$$
(8)

We proposed a Riemannian conjugate gradient for this problem.

Figure 17: Scatter plot of samples $\{x_i\}_{i=1}^{10}$ with real and estimated p.d.f respectively in orange and red. Left are the Gaussian estimators. Right are our estimators.

Geodesic triangles for machine learning

Geodesic triangles for machine learning [2]

Let $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{C}^p$ distributed as $\mathbf{x} \sim \mathbb{C}\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Problem

The Riemannian geometry of the Gaussian distributions is not fully known ...

Solution: use of geodesic triangles

With a cleverly chosen Σ ! Induces a divergence and a Riemannian center of mass

Geodesic triangles for machine learning [2]

Breizhcrops dataset:

 more than 600 000 crop time series across the whole Brittany, ^{+10⁴} ^{•0} 0.8 ^{•0} 0.6 [×] 0.4 ^{•0} 0.2 ^{•0} January April August December

- 9 classes,
- 13 spectral bands.

Figure 18: Example of reflectances ρ of a Sentinel-2 time series.

Estimator of X	Geometry	Overall accuracy (%)
X	$\mathbb{R}^{p \times n}$	10.1
ĥ	\mathbb{R}^{ρ}	13.2
$\hat{\Sigma}$, (μ known)	S_p^{++}	43.9
$\hat{\Sigma}$, (μ unknown)	S_p^{++}	46.7
(proposed) $(\hat{\mu}, \hat{\Sigma})$	\mathcal{N}^{p} with $\delta^{2}_{c,\mathcal{N}^{p}}$	54.3
(proposed) $(\hat{\mu}, \hat{\Sigma})$	\mathcal{N}^{p} with $\delta^{2}_{\perp,\mathcal{N}^{p}}$	53.3

Table 1: Results of Nearest centroid algorithms with different estimators andgeometries on the Breizhcrops dataset.

Conclusion

Conclusion

Theoretical contributions on the whole clustering/classification pipeline that go beyond the Gaussian assumption with known location:

- step 2: new estimators: "low rank" estimator [4], Tyler-type estimator [1]
- step 2 analysis: new intrinsic Cramér-Rao bounds: "low rank" model [4],
- step 3: new Riemannian distances and center of mass: "low rank" model [4], geodesic triangles [2]

Applications on datasets of earth observation:

- unsupervised learning: Riemannian *K-means++* on *Indian pines* hyperspectral image,
- supervised learning: Riemannian *Nearest centroid* on *Breizhcrops* multispectral times series.

Perspectives

2 perspectives:

- on the Tyler-type estimator:
 - accelerate the estimation: 2nd order optimizer, ...
 - define a distance/divergence to perform machine learning,
 - apply this statistical model on a dataset,
- metric learning: instead of defining a metric a-priori, learning the metric from data.

Figure 19: Example of metric learning.

Conferences

- A. Collas, F. Bouchard, A. Breloy, C. Ren, G. Ginolhac, and J.-P. Ovarlez, "A tyler-type estimator of location and scatter leveraging riemannian optimization,", ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). DOI: 10.1109/ICASSP39728.2021.9414974.

A. Collas, F. Bouchard, G. Ginolhac, A. Breloy, C. Ren, and J.-P. Ovarlez, "On the use of geodesic triangles between gaussian distributions for classification problems,", Submitted to ICASSP 2022, minor review - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

Journals

- A. Mian, A. Collas, A. Breloy, G. Ginolhac, and J.-P. Ovarlez, "Robust low-rank change detection for multivariate sar image time series," *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 13, pp. 3545–3556, 2020. DOI: 10.1109/JSTARS.2020.2999615.

A. Collas, F. Bouchard, A. Breloy, G. Ginolhac, C. Ren, and J.-P. Ovarlez, "Probabilistic pca from heteroscedastic signals: Geometric framework and application to clustering," *IEEE Transactions on Signal Processing*, vol. 69, pp. 6546–6560, 2021. DOI: 10.1109/TSP.2021.3130997.

Ongoing

A. Collas, A. Breloy, C. Ren, G. Ginolhac, and J.-P. Ovarlez, *Riemannian classification approach to non-centered mixture of scaled gaussian*,

Software:

- contribution to *pyManopt*¹: a Python toolbox for optimization on Riemannian manifolds ,
- creation of *pyCovariance*: a Python toolbox for covariance estimation and clustering/classification using Riemannian geometry.

Workshops:

- talk at "Statistical Learning for Signal and Image Processing (SLSIP) Workshop", A German-Finnish-French Workshop, Rüdesheim October 2021,
- project of Riemannian optimization for optimal transport at "LOGML 2021", mentored by Bamdev Mishra, creator of *Manopt* the leading toolbox of optimization of Riemannian manifolds.

¹https://github.com/pymanopt/pymanopt

Appendices

Numerical experiment [4]

Figure 20: MSE over N = 100 simulated sets $\{x_i\}$ (p = 100 and k = 20) with respect to the number of samples *n* for the considered estimators. s^2 controls the heterogeneity of the textures.

Numerical experiment [1]

Figure 21: Subspace estimation error over N = 200 simulated sets $\{x_i\}$ (p = 10) with respect to the number of samples *n* for different estimators. CG is the Riemannian Conjugate Gradient and "Ty, μ " is the Tyler's estimator with μ known.