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Context



Context of the PhD

In the last few years many images have been taken from the earth with
different technologies (SAR, multi-spectral/hyperspectral imaging, ...).
Problematics

The objective is to extract semantic information in these new data
More particularly we focus on 2 specific topics:

e semantic segmentation (spatial information)

e time-series clustering/classification (temporal information)
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Figure 2: Segmented image,
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Figure 1: Raw image. one color = one class (grass, woods,

).



Example of multi-spectral time series

Sentinel 2 Satellite Spectral Bands
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Figure 3: Example of reflectances p of a Sentinel-2 time series of meadows
from Breizhcrops dataset.
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Figure 4: Example of reflectances p of a Sentinel-2 time series of corn from
Breizhcrops dataset.



Step 3: parameter

Step 1: sliding window Step 2: parameter estimation clustering/classification 2 classes: white and red
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Figure 5: Clustering/classification pipeline on an image.

Examples of 0:
0 = ¥ a covariance matrix, § = (u, X) a vector and a covariance
matrix, 6 = (7, U) a scalar and an orthogonal matrix...



Clustering/classification pipeline and Riemannian geometry

Clustering/classification and Riemannian geometry

The statistical model depends on 8 € M, a Riemannian manifold.
e step 2: maximization of the likelihood L over M,

e step 3: computing distances and centers of mass on M.

Existing work
Let x1,---,x, € CP be data points distributed as x ~ CA/(0, X).
Step 2: maximum likelihood estimator:

Step 3: Riemannian distance on H}* (geodesic distance):

_1 1
d(Zl,Zg):Hlog (zrmex; )H2 (2)



Riemannian geometry and
objectives



What is a Riemannian manifold ?

Curvature induced by:

e constraints, e.g. the sphere: ||x|| =1,

e the Riemannian metric, e.g. on H}™:
&m =Tr(Z ez ).

Figure 6: A Riemannian
manifold.

Examples of Riemannian manifolds M:
e linear space (no constraints): CP*P
e orthogonality constraints: St, x = {U € CP*k : viu =1}
e positivity constraints: 7T = {¥ € H, : Vx # 0 € CP, x"Lx >0}
e rank constraints: H, = {¥ € H, : rank(¥) = k}

e norm constraints: SP 1 = {X e CP*P: || X||g =1}



Step 2: objectives for parameter estimation

Figure 7: Example of a SAR image Figure 8: Example of a hyperspectral
(from nasa.gov). image (from nasa.gov).
Objectives:

e Develop robust estimators, i.e. estimators that work well with non
Gaussian data because of the high resolution of images.

e Develop regularized estimators, i.e. estimators that handle high
dimension of hyperspectral images.


nasa.gov
nasa.gov

Step 3: objectives for parameter clustering/classification

Figure 9: Distance: Figure 10: Center of mass:
length of the geodesic . 0 = argmingg >, d2(6,6:).
Objectives:

Develop distances

e that respect the geometry of M (e.g. orthogonality constraints),

e and that are related to the chosen statistical distributions.



Study of a "low rank” model



Study of a "low rank” model [4]

Let x1, -+, x, € CP be data points.

Assumption
The signal belongs to a k < p dimensional subspace denoted span(U).

Model
d
xi |[ri= yTiUg; + o (3)
ecr signal€span(U) noisecCr

where g; ~ CN(0, I4) and n; ~ CN(0, I,,) are independent;
7 € (Rf)" contains the unknown deterministic textures 7;; and
U < CP*k is an orthogonal basis of the subspace.



MLE and intrinsic Cramér-Rao bound [4]

Maximum likelihood estimation (MLE)

Maximization of the likelihood while respecting the constraints:

e U: orthogonal basis of the subspace (and thus invariant by rotation !)

o 7 c (R)" (positivity constraint)

L L(u, ) (4)

We proposed a Riemannian stochastic gradient descent for this problem.

Bounds
Study of the performance through intrinsic Cramer-Rao bounds:

subspace estimation error

(p—Kkk _ (p—k)k

E[d¢, , (span(0),span(V))] > e~ (5)
2 15~ (1 +m)?
E[d(R:r)n (Tv T)] 2 k z; 7»2 (6)
N e/ i= i

texture estimation error



lllustration [4]

Figure 11: Scatter plot of samples {x;}1°% with real and estimated subspaces
respectively in orange and red in the case E[r;] = 10.

Remark

Both subspaces are really close !
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K-means++ on a Riemannian manifold [4]

M
(Ulle) (U2aT2)

Figure 12: Distance. Figure 13:
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Figure 14: Figure 15: Figure 16: Ground truth.
Euclidean K-means+-: Proposed K-means+:
OA = 31.2%. OA = 47.2%
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A Tyler-type estimator




A Tyler-type estimator using manifold optimization [1]

Problem
Let x1,---,x, € CP distributed as

X~ (CN(/L,T,‘Z) (7)
with p € CP, 7 € (Rf)" and ¥ € H} (X >~ 0).

e 1 = 0: Tyler's estimator converges to the maximum likelihood
estimator.

e 1 unknown: no estimator realizing the maximum likelihood
estimator exists ...

Solution: maximizing the likelihood on a Riemannian manifold

e 828 im0 HE B T) (8)

We proposed a Riemannian conjugate gradient for this problem.
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lllustration [1]

Figure 17: Scatter plot of samples {x;}12; with real and estimated p.d.f
respectively in orange and red. Left are the Gaussian estimators. Right are our
estimators.
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Geodesic triangles for machine
learning




Geodesic triangles for machine learning [2]

Let xq,---,x, € CP distributed as x ~ CA (u, X).

Problem
The Riemannian geometry of the Gaussian distributions is not fully

M
CN(ul,zN(uz, )

Solution: use of geodesic triangles

known ...

With a cleverly chosen ¥ !

M
CA (1, 1) CN (11, ) In.duces ? divergence and a
Riemannian center of mass !
(CN(“'QVZ)
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Geodesic triangles for machine learning [2]

Breizhcrops dataset: 1,10
e more than 600000 crop 502
time series across the §18:12l : A , A
whole Brittany, Jgnuary Ap;ril Auéust Dece‘mber

e 9 classes,
Figure 18: Example of reflectances p of a

e 13 spectral bands. Sentinel-2 time series.

Estimator of X Geometry Overall accuracy (%)
X RPX"N 10.1
I RP 13.2
%, (1 known) Spt 43.9
S, (1 unknown) sj* 46.7
(proposed) (., 5) NP with 62 - 54.3
(proposed) (2,%) NP with 62 \p 53.3

Table 1: Results of Nearest centroid algorithms with different estimators and
geometries on the Breizhcrops dataset.
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Conclusion




Conclusion

Theoretical contributions on the whole clustering/classification pipeline
that go beyond the Gaussian assumption with known location:

e step 2: new estimators: "low rank” estimator [4], Tyler-type
estimator [1]

e step 2 analysis: new intrinsic Cramér-Rao bounds: "low rank”
model [4],

e step 3: new Riemannian distances and center of mass: "low rank”
model [4], geodesic triangles [2]
Applications on datasets of earth observation:
e unsupervised learning: Riemannian K-means++ on Indian pines
hyperspectral image,

e supervised learning: Riemannian Nearest centroid on Breizhcrops
multispectral times series.
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Perspectives

2 perspectives:

e on the Tyler-type estimator:
e accelerate the estimation: 2" order optimizer, ...
e define a distance/divergence to perform machine learning,
e apply this statistical model on a dataset,
e metric learning: instead of defining a metric a-priori, learning the
metric from data.
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Figure 19: Example of metric learning.
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Software and workshops

Software:

e contribution to pyManopt': a Python toolbox for optimization on
Riemannian manifolds ,

e creation of pyCovariance: a Python toolbox for covariance
estimation and clustering/classification using Riemannian geometry.

Workshops:

e talk at "Statistical Learning for Signal and Image Processing
(SLSIP) Workshop", A German-Finnish-French Workshop,
Riidesheim October 2021,

e project of Riemannian optimization for optimal transport at
"LOGML 2021", mentored by Bamdev Mishra, creator of Manopt
the leading toolbox of optimization of Riemannian manifolds.

Thttps://github.com/pymanopt/pymanopt
21
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Numerical experiment [4]
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Figure 20: MSE over N = 100 simulated sets {x;} (p = 100 and k = 20) with
respect to the number of samples n for the considered estimators. s> controls

the heterogeneity of the textures.
22



Numerical experiment [1]
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Figure 21: Subspace estimation error over N = 200 simulated sets {x;}
(p = 10) with respect to the number of samples n for different estimators. CG

"

is the Riemannian Conjugate Gradient and " Ty,u” is the Tyler's estimator with

p known.
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