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Context



Context of the PhD

In the last few years many images have been taken from the earth with

different technologies (SAR, multi-spectral/hyperspectral imaging, ...).

Problematics

The objective is to extract semantic information in these new data.

More particularly we focus on 2 specific topics:

• semantic segmentation (spatial information),

• time-series clustering/classification (temporal information).

Figure 1: Raw image.

Figure 2: Segmented image,

one color = one class (grass, woods,

...). 1



Example of multi-spectral time series
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Figure 3: Example of reflectances ρ of a Sentinel-2 time series of meadows

from Breizhcrops dataset.
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Figure 4: Example of reflectances ρ of a Sentinel-2 time series of corn from

Breizhcrops dataset.
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Clustering/classification pipeline and Riemannian geometry

Step 1: sliding window Step 2: parameter estimation

Step 3: parameter

clustering/classification

{xi}ni=1 max
θ∈M

L(θ, x1, ..., xn)

θ1
+

θ2
+

θ3
+

θ4
+

θ5
+

One θ characterizes

one pixel !

θ6
+ θ8

+
θ9

+

2 classes: white and red

Figure 5: Clustering/classification pipeline on an image.

Examples of θ:

θ = Σ a covariance matrix, θ = (µ,Σ) a vector and a covariance

matrix, θ = (τi ,U) a scalar and an orthogonal matrix...
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Clustering/classification pipeline and Riemannian geometry

Clustering/classification and Riemannian geometry

The statistical model depends on θ ∈M, a Riemannian manifold:
• step 2: maximization of the likelihood L over M,

• step 3: computing distances and centers of mass on M.

Existing work

Let x1, · · · , xn ∈ Cp be data points distributed as x ∼ CN (0,Σ).

Step 2: maximum likelihood estimator:

Σ̂ =
1

n

n∑
i=1

x ix i
H . (1)

Step 3: Riemannian distance on H++
p (geodesic distance):

d(Σ1,Σ2)=
∥∥∥log

(
Σ
− 1

2
1 Σ2Σ

− 1
2

1

)∥∥∥
2
. (2)
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Riemannian geometry and

objectives



What is a Riemannian manifold ?

M

TθM

θ

ξ

η
α•

Figure 6: A Riemannian

manifold.

Curvature induced by:

• constraints, e.g. the sphere: ‖x‖ = 1,

• the Riemannian metric, e.g. on H++
p :

〈ξ,η〉MΣ = Tr(Σ−1ξΣ−1η).

Examples of Riemannian manifolds M:

• linear space (no constraints): Cp×p

• orthogonality constraints: Stp,k = {U ∈ Cp×k : UHU = I k}
• positivity constraints: H++

p = {Σ ∈ Hp : ∀x 6= 0 ∈ Cp, xHΣx > 0}
• rank constraints: H+

p,k = {Σ ∈ Hp : rank(Σ) = k}

• norm constraints: Sp2−1 = {X ∈ Cp×p : ‖X‖F = 1}
• ...
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Step 2: objectives for parameter estimation

Figure 7: Example of a SAR image

(from nasa.gov).
Figure 8: Example of a hyperspectral

image (from nasa.gov).

Objectives:

• Develop robust estimators, i.e. estimators that work well with non

Gaussian data because of the high resolution of images.

• Develop regularized estimators, i.e. estimators that handle high

dimension of hyperspectral images.
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Step 3: objectives for parameter clustering/classification

M
θ1 θ2• •

•
γ(t)

Figure 9: Distance:

length of the geodesic γ.

M
• θ1

•θ2
• θ4

• θ3

• θ

Figure 10: Center of mass:

θ = arg minθ∈M
∑

i d
2
γ(θ, θi ).

Objectives:

Develop distances

• that respect the geometry of M (e.g. orthogonality constraints),

• and that are related to the chosen statistical distributions.
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Study of a ”low rank” model



Study of a ”low rank” model [4]

Let x1, · · · , xn ∈ Cp be data points.

Assumption

The signal belongs to a k < p dimensional subspace denoted span(U).

Model

x i︸︷︷︸
∈Cp

|τi
d
=
√
τi U g i︸ ︷︷ ︸

signal∈span(U)

+ ni︸︷︷︸
noise∈Cp

(3)

where g i ∼ CN (0, I k) and ni ∼ CN (0, I p) are independent;

τ ∈ (R+
∗ )n contains the unknown deterministic textures τi ; and

U ∈ Cp×k is an orthogonal basis of the subspace.
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MLE and intrinsic Cramèr-Rao bound [4]

Maximum likelihood estimation (MLE)

Maximization of the likelihood while respecting the constraints:

• U: orthogonal basis of the subspace (and thus invariant by rotation !)

• τ ∈ (R+
∗ )n (positivity constraint)

max
U,τ∈M

L(U, τ ) (4)

We proposed a Riemannian stochastic gradient descent for this problem.

Bounds

Study of the performance through intrinsic Cramèr-Rao bounds:

subspace estimation error︷ ︸︸ ︷
E[d2

Grp,k
(span(Û), span(U))] ≥

(p − k)k

ncτ
≈

(p − k)k

n × SNR
(5)

E[d2
(R+
∗ )n

(τ̂ , τ )]︸ ︷︷ ︸
texture estimation error

≥
1

k

n∑
i=1

(1 + τi )
2

τ2
i

(6)
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Illustration [4]

Figure 11: Scatter plot of samples {x i}1000
i=1 with real and estimated subspaces

respectively in orange and red in the case E[τi ] = 10.

Remark

Both subspaces are really close !
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K-means++ on a Riemannian manifold [4]

M
(U1, τ 1) (U2, τ 2)• •

•
γ(t)

Figure 12: Distance.

M
• (U1, τ1)

•(U2, τ2)

•
(U4, τ4)•(U3, τ3)

•(U, τ )

Figure 13: Center of mass (U , τ ).
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Figure 14:

Euclidean K-means++:

OA = 31.2%.
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Figure 15:

Proposed K-means++:

OA = 47.2%
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Figure 16: Ground truth.
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A Tyler-type estimator



A Tyler-type estimator using manifold optimization [1]

Problem

Let x1, · · · , xn ∈ Cp distributed as

x i ∼ CN (µ, τiΣ) (7)

with µ ∈ Cp, τ ∈ (R+
∗ )n and Σ ∈ H++

p (Σ � 0).

• µ = 0: Tyler’s estimator converges to the maximum likelihood

estimator.

• µ unknown: no estimator realizing the maximum likelihood

estimator exists ...

Solution: maximizing the likelihood on a Riemannian manifold

max
µ∈Cp,Σ�0,τi>0

L(µ,Σ, τ ) (8)

We proposed a Riemannian conjugate gradient for this problem.
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Illustration [1]

Figure 17: Scatter plot of samples {x i}10
i=1 with real and estimated p.d.f

respectively in orange and red. Left are the Gaussian estimators. Right are our

estimators.
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Geodesic triangles for machine

learning



Geodesic triangles for machine learning [2]

Let x1, · · · , xn ∈ Cp distributed as x ∼ CN (µ,Σ).

Problem

The Riemannian geometry of the Gaussian distributions is not fully

known ...

M
CN (µ1,Σ1) CN (µ2,Σ2)• •??

Solution: use of geodesic triangles

M
CN (µ1,Σ1)

CN (µ2,Σ)

CN (µ2,Σ2)•

•

•

With a cleverly chosen Σ !

Induces a divergence and a

Riemannian center of mass !
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Geodesic triangles for machine learning [2]

Breizhcrops dataset:

• more than 600 000 crop

time series across the

whole Brittany,

• 9 classes,

• 13 spectral bands.
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Figure 18: Example of reflectances ρ of a

Sentinel-2 time series.

Estimator of X Geometry Overall accuracy (%)

X Rp×n 10.1

µ̂ Rp 13.2

Σ̂, (µ known) S++
p 43.9

Σ̂, (µ unknown) S++
p 46.7

(proposed) (µ̂, Σ̂) Np with δ2
c,Np 54.3

(proposed) (µ̂, Σ̂) Np with δ2
⊥,Np 53.3

Table 1: Results of Nearest centröıd algorithms with different estimators and

geometries on the Breizhcrops dataset.
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Conclusion



Conclusion

Theoretical contributions on the whole clustering/classification pipeline

that go beyond the Gaussian assumption with known location:

• step 2: new estimators: ”low rank” estimator [4], Tyler-type

estimator [1]

• step 2 analysis: new intrinsic Cramér-Rao bounds: ”low rank”

model [4],

• step 3: new Riemannian distances and center of mass: ”low rank”

model [4], geodesic triangles [2]

Applications on datasets of earth observation:

• unsupervised learning: Riemannian K-means++ on Indian pines

hyperspectral image,

• supervised learning: Riemannian Nearest centroid on Breizhcrops

multispectral times series.
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Perspectives

2 perspectives:

• on the Tyler-type estimator:

• accelerate the estimation: 2nd order optimizer, ...

• define a distance/divergence to perform machine learning,

• apply this statistical model on a dataset,

• metric learning: instead of defining a metric a-priori, learning the

metric from data.

Figure 19: Example of metric learning.
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Riemannian classification approach to non-centered mixture of
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Software and workshops

Software:

• contribution to pyManopt1: a Python toolbox for optimization on

Riemannian manifolds ,

• creation of pyCovariance: a Python toolbox for covariance

estimation and clustering/classification using Riemannian geometry.

Workshops:

• talk at ”Statistical Learning for Signal and Image Processing

(SLSIP) Workshop”, A German-Finnish-French Workshop,

Rüdesheim October 2021,

• project of Riemannian optimization for optimal transport at

”LOGML 2021”, mentored by Bamdev Mishra, creator of Manopt

the leading toolbox of optimization of Riemannian manifolds.

1https://github.com/pymanopt/pymanopt
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Numerical experiment [4]
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(Û
))

s2 = 4

SCM
BCD
RGD
CRBU SNR = 1

s2 = 2

SCM
BCD
RGD
CRBU

103 104

10−2

10−1

100

n

d
2 G

r p
,k

(π
(U

),
π

(Û
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Figure 20: MSE over N = 100 simulated sets {x i} (p = 100 and k = 20) with

respect to the number of samples n for the considered estimators. s2 controls

the heterogeneity of the textures.
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Numerical experiment [1]
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Figure 21: Subspace estimation error over N = 200 simulated sets {x i}
(p = 10) with respect to the number of samples n for different estimators. CG

is the Riemannian Conjugate Gradient and ”Ty,µ” is the Tyler’s estimator with

µ known.
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