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Context



In the last few years many images have been taken from the earth with
different technologies (SAR, multi-spectral/hyperspectral imaging, ...).
Challenges

The objective is to develop clustering methods specific to these new
data. More particularly we focus on 2 specific topics:

e Change detection.

e Semantic segmentation.

Figure 1: Raw image. Figure 2: Segmented image. One color

= one class (grass, woods, ...).



Objectives for parameter estimation

Fi 3: E le of a SAR i
B R IS Figure 4: Example of a hyperspectral
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(from nasa. gov) image (from nasa.gov).

Remark

To segment an image we begin with an estimation step. Because of the
data, we have to develop:

e robust estimators, i.e. estimators that work well with non Gaussian
data because of the high resolution of images,

e regularized estimators, i.e. estimators that handle high dimensional
data.
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Figure 5: Clustering pipeline on an image.

The statistical model depends on 6 € M, a structured parameter in a
smooth manifold.

e Step 2: maximization of the likelihood L over M which can be
turned into a Riemannian geometry.

e Step 3: use of a Riemannian geometry of M to compute distances
and means on M.



Quick introduction on
Riemannian geometry and
optimization on matrix manifolds



Riemannian geometry

A Riemannian manifold is a couple
(M, (-,-)21) where ToM

e M is a smooth manifold (i.e. a locally . %
Euclidean set), ‘

e (-,-)" is an inner product, on Ty M,

called the Riemannian metric. Figure 6: A manifold M with

. its tangent space Ty M.
The vector space Ty M is called the tangent & P ’

space and is the linearization of M at 6.



Introduction to optimization on matrix manifolds

Let f be a real-valued function to minimize over its parameter space:

min £(6) (1)

where M is a Riemannian manifold which include the constraints of our

problem.

Examples of smooth manifolds M:

linear space (no constraints): CP*P

orthogonality constraints (1): U, = {X € CP*P: XX =1,}
orthogonality constraints (2): St,x = {X € CP*k: X"X =1}
symmetry constraints: H, = {X € CP*P: X = X"}

positivity constraints: 7 = {X € H, : Vx # 0 € CP, x"Xx > 0}
norm constraints: SP 1 = {X € CP*P : || X|| = 1}

invariance: Grp, x = Stk /U
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Riemannian geometry and
statistical estimation using the
Fisher information metric



Data model (1/2)

Vk < p, let n data points {x;}7_; C CP distributed as
Xi = VTiugi + n; (2)
gi ~ CN(0, 1), nj ~ CN(0,1,) independent,
T e (RF)", UeSt,, 2 {UeCP.U"U=1,}.
— x; ~CN (0, Ti@) 21, + T,'UUH> (3)
where 0 = (U, T) € Mp k.0 = Stpi x (RF)".

Remark
For all U € Stpyk and O € U £ Stkyk, &;(UO,T) = 171,‘(U,7').



Data model (2/2)

Definition the quotient parameter space
Mpin Z{m(0) : 0 € Mpxn} with 7(8) = {(UO,7T): O € Uy}. (4)
Definition of the covariance matrix v; on M, y , from i
V0 =7(0) € Mpin, i(0)29;(0)=1,+7mU0U". (5)

The negative log-likelihood function is

n

L(0) 2 L(8) = ) _ [log deth;(6) + ;" (1i(6)) " xi] (6)

i=1



Riemannian geometry of ./\_/l,,,k,,7

The tangent space of M, k., at 6 € M, k., is
TiMpin={& = (§u, &) € CPNxR": U"gy +€5U =0} (7)

V&, 7 € T3Mp «,n the Fisher Information Metric is defined as

(€ m5" = E[D L(6)[] D L)) (8)

Proposition (Fisher information metric)

The Fisher information metric on M p,k,n corresponding to the
log-likelihood (6) is

(€ mEM = 2nc, Re(Tr(€gmy)) + k(& 0 (1+ 7)) (n, © 1+ 7)°7)
n 2 9)

_ 1 i
where ¢ = 3 3 T
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Parameter estimation: retraction and Riemannian gradient

n
i L(O) = Li(0 10
9€n./\1/lI:k,n ( ) ; ( ) ( )
We define a retraction: TyMp k.0 — Mp i n:

where U + &, = XX Y" by SVD.
Definition of the Riemannian gradient:

V€ € TygMpyn, D Li(B)[E] = (grad L;(6), )™ (12)

The representative in T(;/Vp7k7,, of the Riemannian gradient of L; at 6 is
grad L;(0) = (Gy, G~) (13)

u H H
- ixi U,
ncT(1+T,-)(p UU")xx;"U

147 — lx,-""UUHx,- for j=1i
(G"')J _{ ,

Gy =

0 otherwise. 1



Riemannian stochastic gradient descent

Input: Initial iterate 9 6 ./\/lp B
Output: Sequence of iterates {0( )}.
t=1
while no convergence do
Randomly draw a subset A C {x;}7_; and set

£ = foeA grad L,-(0( ))
Compute a step size v; and set
—(t+1) 5 =
g = Ry (—ve£M)
t=t+41
end
Algorithm 1: Riemannian stochastic gradient descent

Remark
Complexity of one iteration: O(mpk + pk?) where m = #A.

12



Riemannian geometry and
clustering: application to a
K-means++




Decoupled metric: geometry for distances

Definition

M k,n is endowed with the Riemannian metric defined by

(€, m); """ = aRe(Tr(€ymy)) + B0 0 &) (= on,)  (14)

with a > 0, g > 0.

Sl 3‘

From [2, 5] and properties of product manifolds:

Corollary (Distance)
The squared distance between 61 and 05 is

B, , (61,62) = a O] + 5 llog(T1) — log(T2)|l3. (15)

where Ut U, P o, cos(©)04.

13



Mean computation

The mean ¢ = 7(U, ) of the set of points {6; = 7(U;, 7;)}M, is
obtained from the minimization of the variance,

M
1
c = argmin — d? 0.0,). y
96%\/[;7,&” 2M ; Mp,k,n( ) ( )
Therefore, T is the geometric mean defined as
1) ®1/m
= )

9i€5j

©
where [] is the elementwise product.
A Riemannian gradient descent computes U (mean computation on the
Grassmann manifold). Given U®, the iterate U*Y is obtained with

M
U(t+1) _ expzz;;),k (ll:; Z |ogGUr(F:;k(U,)> ) (18)
i=1

where 1; is the step size.
14



Application in machine learning: K-means++ on M, ,

Clustering framework: the aim is to partition the descriptors {6}, in
S={5,%,-,5}.

K-means++ on M, 4 ,:
Initialization: recursively choose a new center #; with probability

32 )
%. D(0;) denotes the distance dp4,, , from 6; to the closest
center among those already chosen.
Assignment step: Vi € [1, M] assign 6; to the cluster S; with the
nearest ¢, j € [1, K].
Update step: compute new centers ¢; of clusters S;, Vj € [1, K], using
Riemannian means.

15



Application in machine learning: K-means++ on M, ,

K-means/ K-means++ optimize the within-cluster sum of squares:

K
#(S) =)D di,..(6,0)- (19)

Jj=1 6;€S;

K-means++ on a Riemannian geometry is O(log K) competitive with the

optimal clustering:
E[¢] < 8(In K + 2)¢opt (20)

where ¢opT is the minimum of ¢ and the expectation is taken with
respect to the initialization procedure.

16



K-means++ on M, ,

—31.0% (b) K-means++ on “SCM/H;*": OA = 45.2%

0 W w0 w0 @ 10 120 0
o

(c) ground truth (d) K-means++ on M, , »: OA = 47.2%

Figure 7: Indian Pines [4] segmentation results achieved using different
geometries/features. 17



Conclusion

To conclude, we presented:

1. the framework of optimization on matrix manifolds,

2. an estimation algorithm of the Probabilistic PCA from
heteroscedastic signals model,

a K-means++ on M, i , with an application on hyperspectral data.

18



Questions ?
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Quotient manifold

Let M be a smooth manifold and let ~ define an equivalence relation
over M. Every point § € M belongs to an equivalence class

7(B) = {0 e M:0~7).
Under conditions, the quotient space M = M/ ~:= {n(0) : § € M},
with the metric (-, )7, admits a unique Riemannian manifold structure.
Then, the vertical space V; is defined as V; = T;m~*(m(6)). The
horizontal space Hj is such that T;M = V5 @ Hj.

22




Riemannian geometry of M, ,

Vertical space of M, ., at 0 € M g is
V; & Tn H(n(0)) = {(UA,0) : Ac C>k A" = —A}. (21)
Horizontal space Hj: the orthogonal complement to Vj in T;M k n:
My = {(€y,€,) € CP¥ xR UMy =0} (22)

Hence, &; € H; uniquely defines & = D 7(0)[¢5] € T @Mp,k,n and
reciprocally.

23



Negative log-likelihood optimization: FIM vs decoupled metric
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Figure 8: Riemannian gradient descent: Fisher information metric vs
decoupled metric
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Decoupled metric: geometry for distances

From [2, 5] and properties of product manifolds:

Corollary (Exponential mapping)

The exponential mapping on My, ., is represented by
Mo kon(Z Gry, RE)"
expy "7 (€) = (exp™ (€u) exp ) (€,)) (23)
expy™* (£y) = UY cos() + X sin(E), with £, °L XL YT,
+
expt ) (€,) = T O exp(rO L O ).
Corollary (Logarithm mapping)
The logarithm map on M, x , is represented by

|ogMp K, n(02) (IOgU (UQ)’ |0g_’_H§I)n (T2)) (24)

IogGr" “(U) = XOY" where XOY" is computed with
(1, — UL UMY UL(UP U,) 1 °2 X tan(@) V",

|0g(R V(1) =71 0 log(rY ™ © 72). 25
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