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Context



Context

In the last few years many images have been taken from the earth with

different technologies (SAR, multi-spectral/hyperspectral imaging, ...).

Challenges

The objective is to develop clustering methods specific to these new

data. More particularly we focus on 2 specific topics:

• Change detection.

• Semantic segmentation.

Figure 1: Raw image. Figure 2: Segmented image. One color

= one class (grass, woods, ...).
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Objectives for parameter estimation

Figure 3: Example of a SAR image

(from nasa.gov).
Figure 4: Example of a hyperspectral

image (from nasa.gov).

Remark

To segment an image we begin with an estimation step. Because of the

data, we have to develop:

• robust estimators, i.e. estimators that work well with non Gaussian

data because of the high resolution of images,

• regularized estimators, i.e. estimators that handle high dimensional

data.
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Clustering pipeline and Riemannian geometry

Step 1: sliding window Step 2: parameter estimation
Step 3: parameter clustering

{xi}Ni=1 max
θ∈M

L(θ, x1, ..., xN)

θ1
+

θ2
+

θ3
+

θ4
+

θ5
+

One θ characterizes

one pixel !

θ6
+ θ8

+
θ9

+

2 classes: white and red

Figure 5: Clustering pipeline on an image.

The statistical model depends on θ ∈M, a structured parameter in a

smooth manifold.

• Step 2: maximization of the likelihood L over M which can be

turned into a Riemannian geometry.

• Step 3: use of a Riemannian geometry of M to compute distances

and means on M.
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Quick introduction on

Riemannian geometry and

optimization on matrix manifolds



Riemannian geometry

A Riemannian manifold is a couple

(M, 〈·, ·〉Mθ ) where

• M is a smooth manifold (i.e. a locally

Euclidean set),

• 〈·, ·〉Mθ is an inner product, on TθM,

called the Riemannian metric.

The vector space TθM is called the tangent

space and is the linearization of M at θ.

M

TθM

•
θ

Figure 6: A manifold M with

its tangent space TθM.
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Introduction to optimization on matrix manifolds

Let f be a real-valued function to minimize over its parameter space:

min
θ∈M

f (θ) (1)

where M is a Riemannian manifold which include the constraints of our

problem.

Examples of smooth manifolds M:

• linear space (no constraints): Cp×p

• orthogonality constraints (1): Up = {X ∈ Cp×p : XHX = I p}
• orthogonality constraints (2): Stp,k = {X ∈ Cp×k : XHX = I k}
• symmetry constraints: Hp = {X ∈ Cp×p : X = XH}
• positivity constraints: H++

p = {X ∈ Hp : ∀x 6= 0 ∈ Cp, xHXx > 0}
• norm constraints: Sp2−1 = {X ∈ Cp×p : ‖X‖F = 1}
• invariance: Grp,k = Stp,k/Uk
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Introduction to optimization on matrix manifolds

M

•
minimum

•
θ0

Tθ0M

− gradM f (θ0)

• θ1

7



Introduction to optimization on matrix manifolds

M

•
minimum

•
θ0

Tθ0M

− gradM f (θ0)

• θ1

7



Introduction to optimization on matrix manifolds

M

•
minimum

•
θ0

Tθ0M

− gradM f (θ0)

• θ1

7



Introduction to optimization on matrix manifolds

M

•
minimum

•
θ0

Tθ0M

− gradM f (θ0)

• θ1

7



Riemannian geometry and

statistical estimation using the

Fisher information metric



Data model (1/2)

∀k < p, let n data points {xi}ni=1 ⊂ Cp distributed as

xi =
d

√
τiUgi + ni (2)

gi ∼ CN (0, I k), ni ∼ CN (0, I p) independent,

τ ∈ (R+
∗ )n, U ∈ Stp,k , {U ∈ Cp×k : UHU = I k}.

=⇒ xi ∼ CN
(

0, ψi (θ) , I p + τiUUH
)

(3)

where θ = (U , τ ) ∈Mp,k,n , Stp,k × (R+
∗ )n.

Remark

For all U ∈ Stp,k and O ∈ Uk , Stk,k , ψi (UO, τ ) = ψi (U , τ ).
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Data model (2/2)

Definition the quotient parameter space

Mp,k,n , {π(θ) : θ ∈Mp,k,n} with π(θ) = {(UO, τ ) : O ∈ Uk}. (4)

Definition of the covariance matrix ψi on Mp,k,n from ψi

∀θ = π(θ) ∈Mp,k,n, ψi (θ) , ψi (θ) = I p + τiUUH . (5)

The negative log-likelihood function is

L(θ) , L(θ) =
n∑

i=1

[
log detψi (θ) + xi

H(ψi (θ))−1xi
]
. (6)
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Riemannian geometry of Mp,k,n

The tangent space of Mp,k,n at θ ∈Mp,k,n is

TθMp,k,n = {ξ = (ξU , ξτ ) ∈ Cp×k × Rn : UHξU + ξHUU = 0}. (7)

∀ξ, η ∈ TθMp,k,n the Fisher Information Metric is defined as

〈ξ, η〉FIM
θ

= E[D L(θ)[ξ] D L(θ)[η]]. (8)

Proposition (Fisher information metric)

The Fisher information metric onMp,k,n corresponding to the

log-likelihood (6) is

〈ξ, η〉FIM
θ

= 2ncτRe(Tr(ξHUηU)) + k(ξτ � (1 + τ )�−1)T (ητ � (1 + τ )�−1)

(9)
where cτ = 1

n

∑n
i=1

τ 2
i

1+τi
.
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Parameter estimation: retraction and Riemannian gradient

min
θ∈Mp,k,n

L(θ) =
n∑

i=1

Li (θ) (10)

We define a retraction:TθMp,k,n →Mp,k,n:

Rθ(ξ) =

(
XY H , τ + ξτ +

1

2
τ�−1ξ�2τ

)
(11)

where U + ξU = XΣY H by SVD.

Definition of the Riemannian gradient:

∀ξ ∈ TθMp,k,n, D Li (θ)[ξ] = 〈grad Li (θ), ξ〉FIM
θ

. (12)

The representative in TθMp,k,n of the Riemannian gradient of Li at θ is

grad Li (θ) = (GU ,Gτ ) (13)

GU = − τi
ncτ (1 + τi )

(I p −U UH)xixi
HU ,

(Gτ )j =

{
1 + τi − 1

k xi
HUUHxi for j = i

0 otherwise.

For a full review on this topic: Optimization algorithms on matrix

manifolds [1].
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Riemannian stochastic gradient descent

Input: Initial iterate θ
(1) ∈Mp,k,n.

Output: Sequence of iterates {θ(t)}.
t = 1

while no convergence do
Randomly draw a subset A ⊂ {xi}ni=1 and set

ξ(t) =
∑

xi∈A grad Li (θ
(t)

)

Compute a step size νt and set

θ
(t+1)

= R
θ
(t)(−νtξ(t))

t = t + 1
end

Algorithm 1: Riemannian stochastic gradient descent

Remark

Complexity of one iteration: O(mpk + pk2) where m = #A.
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Riemannian geometry and

clustering: application to a

K-means++



Decoupled metric: geometry for distances

Definition

Mp,k,n is endowed with the Riemannian metric defined by

〈ξ, η〉Mp,k,n

θ
= αRe(Tr(ξHUηU)) + β(τ�−1 � ξτ )T (τ�−1 � ητ ) (14)

with α > 0, β > 0.

From [2, 5] and properties of product manifolds:

Corollary (Distance)

The squared distance between θ1 and θ2 is

d2
Mp,k,n

(θ1, θ2) = α ‖Θ‖22 + β ‖log(τ 1)− log(τ 2)‖22 , (15)

where UH
1 U2

SVD
= O1 cos(Θ)OH

2 .
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Mean computation

The mean c = π(U , τ ) of the set of points {θi = π(U i , τ i )}Mi=1 is

obtained from the minimization of the variance,

c = arg min
θ∈Mp,k,n

1

2M

M∑
i=1

d2
Mp,k,n

(θ, θi ). (16)

Therefore, τ is the geometric mean defined as

τ =

 �∏
θi∈Sj

τ i

� 1/m

, (17)

where
�∏

is the elementwise product.

A Riemannian gradient descent computes U (mean computation on the

Grassmann manifold). Given U(t), the iterate U(t+1) is obtained with

U(t+1) = exp
Grp,k
U(t)

(
νt
M

M∑
i=1

log
Grp,k
U(t) (U i )

)
, (18)

where νt is the step size.
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Application in machine learning: K-means++ on Mp,k,n

Clustering framework: the aim is to partition the descriptors {θi}Mi=1 in

S = {S1,S2, · · · ,SK}.

K-means++ on Mp,k,n:

Initialization: recursively choose a new center θi with probability
D(θi )

2∑
θj

D(θj )2
. D(θi ) denotes the distance dMp,k,n

from θi to the closest

center among those already chosen.

Assignment step: ∀i ∈ J1,MK assign θi to the cluster Sj with the

nearest cj , j ∈ J1,KK.

Update step: compute new centers cj of clusters Sj , ∀j ∈ J1,KK, using

Riemannian means.
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Application in machine learning: K-means++ on Mp,k,n

K-means/K-means++ optimize the within-cluster sum of squares:

φ(S) =
K∑
j=1

∑
θi∈Sj

d2
Mp,k,n

(cj , θi ). (19)

K-means++ on a Riemannian geometry is O(logK ) competitive with the

optimal clustering:

E[φ] ≤ 8(lnK + 2)φOPT (20)

where φOPT is the minimum of φ and the expectation is taken with

respect to the initialization procedure.
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K-means++ on Mp,k,n
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(a) K-means++ [3]: OA = 31.2%
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(b) K-means++ on “SCM/H++
p ”: OA = 45.2%

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

Ground truth

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(c) ground truth
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(d) K-means++ on Mp,k,n: OA = 47.2%

Figure 7: Indian Pines [4] segmentation results achieved using different

geometries/features. 17



Conclusion

To conclude, we presented:

1. the framework of optimization on matrix manifolds,

2. an estimation algorithm of the Probabilistic PCA from

heteroscedastic signals model,

3. a K-means++ on Mp,k,n with an application on hyperspectral data.
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Questions ?
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Quotient manifold

Let M be a smooth manifold and let ∼ define an equivalence relation

over M. Every point θ ∈M belongs to an equivalence class

π(θ) = {θ′ ∈M : θ ∼ θ′}.

Under conditions, the quotient space M =M/ ∼:= {π(θ) : θ ∈M},
with the metric 〈·, ·〉Mθ , admits a unique Riemannian manifold structure.

Then, the vertical space Vθ is defined as Vθ = Tθπ
−1(π(θ)). The

horizontal space Hθ is such that TθM = Vθ ⊕Hθ.

Mp,k,n

π−1
(π(θ))

•
θ

TθMp,k,nVθHθ

π

Mp,k,n•
π(θ)

Tπ(θ)Mp,k,n 22



Riemannian geometry of Mp,k,n

Vertical space of Mp,k,n at θ ∈Mp,k,n is

Vθ , Tθπ
−1(π(θ)) = {(UA, 0) : A ∈ Ck×k , AH = −A}. (21)

Horizontal space Hθ: the orthogonal complement to Vθ in TθMp,k,n:

Hθ = {(ξU , ξτ ) ∈ Cp×k × Rn : UHξU = 0}. (22)

Hence, ξθ ∈ Hθ uniquely defines ξθ = Dπ(θ)[ξθ] ∈ Tπ(θ)Mp,k,n and

reciprocally.

Mp,k,n

π−1
(π(θ))

•
θ

TθMp,k,nVθHθ

π

Mp,k,n•
π(θ)

Tπ(θ)Mp,k,n
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Negative log-likelihood optimization: FIM vs decoupled metric

Figure 8: Riemannian gradient descent: Fisher information metric vs

decoupled metric
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Decoupled metric: geometry for distances

From [2, 5] and properties of product manifolds:

Corollary (Exponential mapping)

The exponential mapping onMp,k,n is represented by

exp
Mp,k,n

θ
(ξ) =

(
exp

Grp,k
U (ξU), exp

(R+
∗ )

n

τ (ξτ )
)

(23)

exp
Grp,k
U (ξU) = UY cos(Σ) + X sin(Σ), with ξU

SVD
= XΣY T ,

exp
(R+
∗ )

n

τ (ξτ ) = τ � exp(τ�−1 � ξτ ).

Corollary (Logarithm mapping)

The logarithm map onMp,k,n is represented by

log
Mp,k,n

θ1
(θ2) =

(
log

Grp,k
U1

(U2), log(R+
∗ )

n

τ 1
(τ 2)

)
(24)

log
Grp,k
U1

(U2) = XΘY H where XΘY H is computed with

(I p −U1UH
1 )U2(UH

1 U2)−1
SVD
= X tan(Θ)Y H ,

log(R+
∗ )

n

τ 1
(τ 2) = τ 1 � log(τ�−11 � τ 2).
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