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Introduction



Context of the PhD

In the last few years many images have been taken from the earth with

different technologies (SAR, multi-spectral/hyperspectral imaging, ...).

Problematics

The objective is to develop clustering methods specific to these new

data. More particularly we focus on 2 specific topics:

• Change detection.

• Semantic segmentation.

Figure 1: Raw image. Figure 2: Segmented image. One color

= one class (grass, woods, ...).
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Objectives for parameter estimation

Figure 3: Example of a SAR image

(from nasa.gov).
Figure 4: Example of a hyperspectral

image (from nasa.gov).

Remark

To segment an image we begin with an estimation step. Because of the

data, we have to develop:

• robust estimators, i.e estimators that handle strong noise of SAR

images,

• ”low-rank” estimators, i.e estimators that handle high dimension of

hyperspectral images.
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Riemannian geometry,

optimization, and Intrinsic

Cramér-Rao bounds



Riemannian geometry

A tool of interest for contrained parameters

estimation is the Riemannian geometry.

Briefly, a Riemannian manifold is a couple

(M, 〈·, ·〉Mθ ) where

• M is a smooth manifold (i.e. a locally

Euclidean set),

• 〈·, ·〉Mθ is an inner product, on TθM,

called the Riemannian metric.

M

TθM

•
θ

Figure 5: A manifold M with

its tangent space TθM.

The vector space TθM is called the tangent space and is the

linearization of M at θ.

Then we define some important objects:

1. expMθ (.) : TθM→M, the Riemannian exponential mapping

(extension of straight lines to Riemmanian manifolds),

2. logMθ (.) :M→ TθM, the Riemannian logarithm mapping,

3. d(·, ·)M :M×M→ R, the Riemannian distance.
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Introduction to optimization on matrix manifolds

Let f be a real-valued function to minimize over its parameter space:

min
θ∈M

f (θ)

where M is a Riemannian manifold which include the constraints of our

problem.

Examples of smooth manifolds M:

• linear space (no constraints): Cn×n

• orthogonality constraints (1): Un = {X ∈ Cn×n : XHX = I n}
• orthogonality constraints (2): Stp,k = {X ∈ Cn×k : XHX = I k}
• symmetry constraints: Hn = {X ∈ Cn×n : X = XH}
• positivity constraints: H++

n = {X ∈ Sn : ∀x 6= 0 ∈ Cn, xHXx > 0}
• norm constraints: Sn2−1 = {X ∈ Cn×n : ‖X‖F = 1}
• invariance: Grp,k = Stp,k/Uk
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Introduction to optimization on matrix manifolds

M

•
minimum

•
θ0

Tθ0
M

− gradM f (θ)

• θ1
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Introduction to optimization on matrix manifolds

To minimize f :M→ R, where M is a Riemannian manifold, we need :

• RMθ (·): TθM→M : a retraction (generalization of the exponential

mapping),

• gradM f (θ) : the Riemannian gradient of f at θ ∈Mp,k,n, defined

as,

∀ξ ∈ TθM, D f (θ)[ξ] = 〈gradM f (θ), ξ〉Mθ .

Remark

Input: Initialisation θ0 ∈M, step size α > 0, number of iterations K

Output: θK ∈M
for k = 0 : K − 1 do

θk+1 = RMθk (−α gradM f (θk))

end
Algorithm 1: Algorithm of steepest descent with a constant step size.

For a full review on this topic: Optimization algorithms on matrix

manifolds [AMS08].
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Intrinsic Cramér-Rao Bound (ICRB)

Let
(
M, 〈·, ·〉Mθ

)
be an n-dimensional Riemannian manifold with

{eqθ}1≤q≤n an orthonormal basis of TθM.

Let X ∈ Cp be a random variable that admits a probability density

function (pdf) p(x|θ) which depends on a parameter θ ∈M.

We can compute the Fisher Information Metric, ∀ξ, η ∈ TθM:

〈ξ, η〉FIM
θ = E[D L(θ)[ξ] D L(θ)[η]],

where L is the log-likelihood associated to the pdf.

Then, we can lower bound the variance of an unbiased estimator θ̂ ∈M:

E
[
d2
M(θ, θ̂)

]
≥ Tr(F−1

θ ),

where the Fisher information matrix F θ is defined as (F θ)ql = 〈eqθ , e lθ〉FIM
θ .

For a full review on this topic: Covariance, Subspace, and Intrinsic

Cramér-Rao Bounds [Smi05].
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A Tyler-type estimator of

location and scatter



Compound Gaussian distribution - Data model

Let n data points xi ∈ Cp distributed according to the model:

xi =
d
µ +
√
τiΣ

1
2 ui (1)

where µ ∈ Cp, τ ∈ (R+
∗ )n, Σ ∈ SH++

p and ui ∼ CN (0, I p), with

(R+
∗ )n = {τ ∈ Rn, τ i > 0}, (2)

SH++
p = {Σ ∈ Hp,Σ � 0, det(Σ) = 1}. (3)

Thus, xi follows a Compound Gaussian distribution, i.e.

xi ∼ CN (µ, τiΣ). (4)

Definition

Mp,n = Cp × (R+
∗ )n × SH++

p (5)

Remark

The textures τi are assumed to be unknown and deterministic.
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Data model - Log-likelihood

Hence, ∀θ = (µ, τ ,Σ) ∈Mp,n the negative log-likelihood is

L(θ) =
n∑

i=1

[
log det (τiΣ) +

(xi − µ)HΣ−1(xi − µ)

τi

]
. (6)

And the Maximum Likelihood Estimate satisfies

µ =

(
n∑

i=1

1

τi

)−1 n∑
i=1

xi

τi

Σ =
1

n

n∑
i=1

(xi − µ)(xi − µ)H

τi

τi =
1

p
(xi − µ)HΣ−1(xi − µ).

(7)

Remark

(7) does not satisfy Maronna’s conditions [Mar76], and the associated

fixed-point iterations generally diverge in practice !
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Mp,n: parameter manifold

The goal is to minimize the negative log-likelihood:

θ̂ = arg min
θ∈Mp,n

L(θ). (8)

The tangent space of Mp,n at θ is the product of the tangent spaces of

Cp, (R+
∗ )n and SH++

p i.e,

TθMp,n =
{
ξ ∈ Cp × Rn ×Hp : Tr(Σ−1ξΣ) = 0

}
, (9)

where Hp is the Hermitian set.

Remark

Mp,n is a product manifold of sets which have well known Riemannian

manifolds.
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Mp,n: Riemannian parameter manifold

Definition

Let ξ, η ∈ TθMp,n, the Riemannian metric at θ is defined as,

〈ξ, η〉Mp,n

θ = 〈ξµ,ηµ〉C
p

µ + 〈ξτ ,ητ 〉
(R+
∗ )n

τ + 〈ξΣ,ηΣ〉
H++

p

Σ , (10)

with

• 〈ξµ,ηµ〉C
p

µ = Re{ξHµηµ},

• 〈ξτ ,ητ 〉
(R+
∗ )n

τ = (τ�−1 � ξτ )T (τ�−1 � ητ ), where � and .�t

denote the elementwise product and power operators respectively,

• 〈ξΣ,ηΣ〉
H++

p

Σ = Tr
(
Σ−1ξΣΣ−1ηΣ

)
.

Remark(
Mp,n, 〈·, ·〉

Mp,n
·

)
is a Riemannian manifold and all its geometrical

elements (exponential mapping, parallel transport, and distance) are

derived from Riemannian geometries of Cp, (R+
∗ )n, and SH++

p .
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Riemannian optimization

Definition (Retraction)

∀θ ∈Mp,n,∀ξ ∈ TθMp,n,

R
Mp,n

θ (ξ) =
(
RCp

µ (ξµ),R
(R+
∗ )n

τ (ξτ ),R
SH++

p

Σ (ξΣ)
)
, (11)

with

RCp

µ (ξµ) = µ + ξµ,

R
(R+
∗ )n

τ (ξτ ) = τ + ξτ + 1
2τ
�−1ξ�2

τ ,

R
SH++

p

Σ (ξΣ) = det
(
Σ + ξΣ + 1

2ξΣΣ−1ξΣ

)− 1
p
(
Σ + ξΣ + 1

2ξΣΣ−1ξΣ

)
.

Definition (Parallel transport)

∀θ1, θ2 ∈Mp,n,∀ξ ∈ Tθ1Mp,n,

TMp,n

θ1,θ2
(ξ) =

(
T Cp

µ1,µ2
(ξµ), T (R+

∗ )n

τ 1,τ 2
(ξτ ), T SH

++
p

Σ1,Σ2
(ξΣ)

)
, (12)

with

T Cp

µ1,µ2
(ξµ) = ξµ,

T (R+
∗ )n

τ 1,τ 2
(ξτ ) = τ 2 � τ�−1

1 � ξτ ,

T SH
++
p

Σ1,Σ2
(ξΣ) =

(
Σ2Σ−1

1

) 1
2 ξΣ

((
Σ2Σ−1

1

) 1
2

)H

.
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Riemannian optimization

Input : Initial iterate θ1 ∈Mp,n.

Output: Sequence of iterates {θk}
k := 1;

ξ1 := − grad L(θ1);

while no convergence do
Compute a step size αk (e.g see [AMS08, §4.2]) and set

θk+1 := R
Mp,n

θk
(αkξk);

Compute βk+1 (e.g see [AMS08, §8.3]) and set

ξk+1 := − grad L(θk+1) + βk+1 T
Mp,n

θk ,θk+1
(ξk);

k := k + 1;
end

Algorithm 2: Riemannian conjugate gradient [AMS08]

Remark

grad L(θk) is the Riemannian gradient of the negative log-likelihood.

14



Numerical experiment

Figure 6: Example of a set of points generated with a heavy-tailed distribution

with real probability density function (p.d.f.) in orange. Estimated p.d.f. are in

red: Gaussian estimators on the left, our estimators on the right.
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Numerical experiment

We compare the mean squared errors of different estimators on simulated

data according to model (17).

1. Gaussian estimators: sample mean µG and SCM denoted ΣG.

2. Two-step estimation: the sets {xi}ni=1 are centered with µG and

then we estimate Σ using Tyler’s M-estimator [Tyl87]. The

estimator is denoted ΣTy,µG

.

3. Tyler’s joint estimators of location and scatter matrix [Tyl87]

denoted µTy and ΣTy. It converges in practice unlike fixed-point

equations of the MLE.

4. Tyler’s M-estimator with location known [Tyl87]. The sets {xi}ni=1

are centered with µ and then we estimate Σ. The estimator is

denoted ΣTy,µ.

5. Our estimators µCG and ΣCG: a Riemannian conjugate gradient to

minimize (6) on Mp,n performed with the library Pymanopt

[TKW16].
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Numerical experiment
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Figure 7: Mean squared errors over 200 simulated sets {xi}ni=1 (p = 10) with

respect to the number n of samples for the considered estimators

µ̂ ∈ {µG,µTy,µCG} and Σ̂ ∈ {ΣG,ΣTy,µG

,ΣTy,µ,ΣTy,ΣCG}.

Remark

µCG and ΣCG, Riemannian Conjugate Gradient estimators, perform

better than other estimators. For n ≥ 3p, ΣCG perform as good as

Tyler’s estimator with µ known, ΣTy,µ, [Tyl87] !
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A Geometry for Probabilistic

PCA from heteroscedastic signals



Unitary matrices and complex Stiefel manifold

Definition

The unitary matrices are defined as:

Uk = {U ∈ Ck×k : UHU = I k} (13)

The complex Stiefel manifold is defined as:

Stp,k = {U ∈ Cp×k : UHU = I k} (14)

The complex Grassmann manifold is defined as:

Grp,k = Stp,k/Uk = {π(U) : U ∈ Stp,k}, (15)

where π is such that

π(U) = {UO : O ∈ Uk}. (16)
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Data model

Let n data points {xi} ⊂ Cp that are distributed as

xi =
d

√
τiUgi + ni (17)

where gi ∼ CN (0, I k) and ni ∼ CN (0, I p) are independent. τ ∈ (R+
∗ )n

and U ∈ Stp,k .

Hence,

xi ∼ CN
(

0, ψi (θ) , I p + τiUUH
)

(18)

where θ = (U , τ ) ∈Mp,k,n , Stp,k × (R+
∗ )n.

Remark

For all U ∈ Stp,k and O ∈ Uk , ψi (UO, τ ) = ψi (U , τ ).

Hence, each ψi induces a function ψi on the product manifold

Mp,k,n , Grp,k × (R+
∗ )n such that ψi (π(U), τ ) = ψi (U , τ ).

The negative log-likelihood function, defined on Mp,k,n, of our model is

L(θ) =
∑
i

log detψi (θ) + xi
H(ψi (θ))−1xi . (19)
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Riemannian geometry of manifold Mp,k,n = Stp,k × (R+
∗ )

n

Since Mp,k,n = Stp,k × (R+
∗ )n, the tangent space of Mp,k,n at

θ ∈Mp,k,n is

TθMp,k,n = TUStp,k × Tτ (R+
∗ )n (20)

where TUStp,k = {ξU ∈ Cp×k : UHξU + ξHUU = 0}, and Tτ (R+
∗ )n is

identified to Rn.

Definition

Mp,k,n is endowed with the Riemannian metric defined, for θ ∈Mp,k,n,

ξ = (ξU , ξτ ), η = (ηU ,ητ ) ∈ TθMp,k,n, by

〈ξ, η〉Mp,k,n

θ
= α〈ξU ,ηU〉

Stp,k
U + β〈ξτ ,ητ 〉(R

++)n

τ (21)

where

〈ξU ,ηU〉
Stp,k
U = Re(Tr(ξHUηU)),

〈ξτ ,ητ 〉
(R+
∗ )n

τ = (τ�−1 � ξτ )T (τ�−1 � ητ ),

α > 0, β > 0.

20



Riemannian geometry of manifold Mp,k,n = Grp,k × (R+
∗ )

n

From [EAS98; AMS04], the tangent space

Tπ(U)Grp,k is represented by a subspace of

TUStp,k : the horizontal space, which is

HU = {ξU ∈ Cp×k : UHξU = 0}. (22)

A vector ξU ∈ HU uniquely defines the

tangent vector

ξπ(U) = Dπ(U)[ξU ] ∈ Tπ(U)Grp,k .

Stp,k

π−1
(π(U))

•
U

TUStp,k
VU

HU

π

Grp,k•
π(U)

Tπ(U)Grp,k

θ = (π(U), τ ) ∈Mp,k,n is represented by θ = (U , τ ) ∈Mp,k,n.

Corollary

The tangent space TθMp,k,n is represented by HU × Tτ (R+
∗ )n which is

included in TθMp,k,n = TUStp,k × Tτ (R+
∗ )n.
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Riemannian geometry of manifold Mp,k,n = Grp,k × (R+
∗ )

n

From [AMS04; EAS98] and properties of product manifolds:

Corollary (Exponential mapping)

For θ ∈Mp,k,n, ξ ∈ TθMp,k,n, the exponential mapping is,

exp
Mp,k,n

θ (ξ) =
(

exp
Grp,k
π(U)(ξπ(U)), exp

(R+
∗ )n

τ (ξτ )
)

(23)

exp
Grp,k
π(U)(ξπ(U)) = π(UY cos(Σ) + X sin(Σ)), with ξU

SVD
= XΣY T ,

exp
(R+
∗ )n

τ (ξτ ) = τ � exp(τ�−1 � ξτ ).

Corollary (Logarithm mapping)

Let θ1 = (π(U1), τ 1), θ2 = (π(U2), τ 2) ∈Mp,k,n, the logarithm map is,

log
Mp,k,n

θ1
(θ2) =

(
log

Grp,k
π(U1)(π(U2)), log(R+

∗ )n

τ 1
(τ 2)

)
(24)

log
Grp,k
π(U1)(π(U2)) = Dπ(U1)[XΘY H ] where XΘY H ∈ HU1 is defined

through the SVD (I p −U1UH
1 )U2(UH

1 U2)−1 SVD
= X tan(Θ)Y H ,

log(R+
∗ )n

τ 1
(τ 2) = τ 1 � log(τ�−1

1 � τ 2). 22



Riemannian geometry of manifold Mp,k,n = Grp,k × (R+
∗ )

n

From [AMS04; EAS98] and properties of product manifolds:

Corollary (Distance)

Finally, the corresponding distance between θ1 and θ2 is

d2
Mp,k,n

(θ1, θ2) = αd2
Grp,k (π(U1), π(U2)) + βd2

(R+
∗ )n(τ 1, τ 2), (25)

where

d2
Grp,k

(π(U1), π(U2)) = ‖Θ‖2
2 where UH

1 U2
SVD
= O1 cos(Θ)OH

2 ,

d2
(R+
∗ )n

(τ 1, τ 2) = ‖log(τ 1)− log(τ 2)‖2
2.
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Intrinsic Cramér-Rao Bound

From [Smi05]:

4 steps to get an Intrinsic Cramér-Rao Bound:

1. compute the Fisher Information Metric:

〈ξ, η〉FIM
θ

= E[D L(θ)[ξ] D L(θ)[η]], (26)

2. provide an orthonormal basis {eq
θ
}1≤q≤2(p−k)k+n of TθMp,k,n,

3. compute the Fisher information matrix F θ. The ql th element of F θ
is defined as

(F θ)ql = 〈eq
θ
, e l
θ
〉FIM
θ

, (27)

4. lower bound the variance:

E
[
d2
Mp,k,n

(θ, θ̂)
]
≥ Tr(F−1

θ
). (28)

24



Fisher information metric and orthonormal basis of TθMp,k,n

Proposition (Fisher information metric)

Given θ = (π(U), τ ) ∈Mp,k,n, ξ = (ξU , ξτ ) ∈ TθMp,k,n and

η = (ηU ,ητ ) ∈ TθMp,k,n the Fisher information metric on Mp,k,n

corresponding to the log-likelihood is

〈ξ, η〉FIM
θ

= 2ncτRe(Tr(ξHUηU))

+ k(ξτ � (1 + τ )�−1)T (ητ � (1 + τ )�−1)
(29)

where cτ = 1
n

∑n
i=1

τ 2
i

1+τi
.

Proposition (Orthonormal basis of TθMp,k,n)

Given θ ∈Mp,k,n, an orthonormal basis of TθMp,k,n is{
{(α− 1

2 U⊥Kij , 0), (α−
1
2 iU⊥Kij , 0)}1≤i≤p−k

1≤j≤k
, {(0, β−

1
2 τiei )}1≤i≤n

}
(30)

where U⊥ ∈ Stp,p−k is such that UHU⊥ = 0, Kij ∈ R(p−k)×k with ij th

element is 1, zeros elsewhere and ei ∈ Rn : its i th element is 1, zeros

elsewhere. 25



Fisher information matrix F θ

Proposition (Fisher information matrix)

The Fisher information matrix F θ on Mp,k,n admits the structure

F θ =

(
FU 0

0 F τ

)
(31)

with

FU = 2α−1 n cτ I 2(p−k)k , and

F τ = β−1 k diag
(
τ�2 � (1 + τ )�−2

)
,

where diag(·) returns the diagonal matrix formed with the elements of

its argument.
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ICRB

Proposition (Intrinsic Cramér-Rao bound on Grp,k)

Given Û ∈ Stp,k an estimation of U ∈ Stp,k , the Intrinsic Cramér-Rao

bound which lower bounds the subspace estimation error is

E
[
d2

Grp,k (π(U), π(Û))
]
≥ (p − k)k

ncτ
, CRBU (32)

where cτ = 1
n

∑n
i=1

τ 2
i

1+τi
.

Proposition (Intrinsic Cramér-Rao bound on (R+
∗ )n)

Given τ̂ ∈ (R+
∗ )n an estimation of τ ∈ (R+

∗ )n, the Intrinsic Cramér-Rao

bound is

E
[
d2

(R+
∗ )n(τ , τ̂ )

]
≥ 1

k

n∑
i=1

(1 + τi )
2

τ 2
i

, CRBτ (33)
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Numerical experiment

We generate sets {xi}ni=1, with,

xi ∼ CN (0, I p + τiUUH) (34)

and

τi ∼ Log-normal

(
−s2

2
, s2

)
(35)

τi ← SNR× τi . (36)

Here are the considered estimators in the simulations:

1. SCM: the k first principal eigenvectors of the SCM of {xi}ni=1 are

concatenated to get USCM.

2. BCD: the MLE estimate is done using a block coordinate descent

(BCD) on {xi}ni=1 [Bre+13]. The estimators are denoted UBCD and

τBCD.

3. RO: Riemannian optimization (RO) is performed on {xi}ni=1 using a

Riemannian conjugate gradient. Pymanopt library [TKW16] (builds

upon the Manopt library [Bou+14]) achieves this optimization. The

estimators are denoted URO and τRO. 28



Numerical experiment
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Figure 8: MSE over N = 100 simulated sets {xi} (p = 100 and k = 20) with

respect to the number of samples n for the three considered estimators. The

textures are generated with s2 = 4 (left part), s2 = 2 (right part), SNR = 1

(upper part), SNR = 10 (lower part). 29



Numerical experiment
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Figure 9: MSE over N = 100 simulated sets {xi} (n = 104, p = 100 and

k = 20) with respect to the SNR for the BCD and RO estimators. The

textures are generated with s2 = 4 (left) and s2 = 2 (right).
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Application in machine learning: mean computation of {θi}

Clustering framework: the aim is to partition the descriptors {θi}Mi=1 in

S = {S1,S2, · · · ,SK}.
Let m = #Sj , the variance Vj of Sj at θ ∈Mp,k,n is defined as,

Vj(θ) =
1

m

∑
θi∈Sj

d2
Mp,k,n

(θ, θi ). (37)

The mean cj of the set of points Sj is obtained from the minimization of

the variance,

cj = arg min
θ∈Mp,k,n

1

2
Vj(θ). (38)

As in the case of [Kar77], the gradient is

gradVj(θ) = − 1

m

∑
θi∈Sj

log
Mp,k,n

θ (θi ). (39)

Consequently, cj = (π(U), τ ) satisfies,∑
θi∈Sj

logMp,k,n
cj (θi ) = 0. (40)
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Application in machine learning: mean computation of {θi}

Hence, 
∑
θi∈Sj

log
Grp,k
π(U)(π(U i )) = 0,

∑
θi∈Sj

log(R+
∗ )n

τ (τ i ) = 0.
(41)

Therefore, τ is the geometric mean defined as

τ =

 �∏
θi∈Sj

τ i

� 1/m

, (42)

where
�∏

is the elementwise product. To estimate the mean of subspaces

{π(U i )} we use a Riemannian gradient descent. Given π(U(t)) ∈ Grp,k ,

the iterate π(U(t+1)) ∈ Grp,k is obtained with

π(U(t+1)) = exp
Grp,k
π(U(t))

νt
m

∑
θi∈Sj

log
Grp,k
π(U(t))

(π(U i ))

 , (43)

where νt is the step size. 32



K-means++ on Mp,k,n
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(a) K-means++ [AV07]: OA = 31.2%
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(b) K-means++ on “SCM/H++
p ”: OA = 45.2%
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(c) ground truth
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(d) K-means++ on Mp,k,n: OA = 47.2%

Figure 10: Indian Pines [BBL15] segmentation results achieved using different

geometries/features. 33



Conclusion

To conclude, we presented:

1. the notion of Riemannian geometry,

2. the framework of optimization on matrix manifolds,

3. the concept of Intrinsic Cramér-Rao bound,

4. an algorithm of clustering on a Riemannian manifold with a

K-means++ on Mp,k,n with an application on hyperspectral data.
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Questions ?
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Quotient manifold

Let M be a smooth manifold and let ∼ define an equivalence relation

over M. Every point θ ∈M belongs to an equivalence class

π(θ) = {θ′ ∈M : θ ∼ θ′}.

Under conditions, the quotient space M =M/ ∼:= {π(θ) : θ ∈M},
with the metric 〈·, ·〉Mθ , admits a unique Riemannian manifold structure.

Then, the vertical space Vθ is defined as Vθ = Tθπ
−1(π(θ)). The

horizontal space Hθ is such that TθM = Vθ ⊕Hθ.

M
π−1

(π(θ))

•
θ

TθM VθHθ

π

M•
π(θ)

Tπ(θ)M
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